CoFe2O4/Fe magnetic nanocomposite: exchange coupling behavior and microwave absorbing property

Warning The system is temporarily closed to updates for reporting purpose.

Mahdikhah, Vahid and Ataie, Abolghasem and Babaei, Alireza and Sheibani, Saeed and Ow-Yang, Cleva W. and Khabbazabkenar, Sirous (2020) CoFe2O4/Fe magnetic nanocomposite: exchange coupling behavior and microwave absorbing property. (Accepted)

Warning
There is a more recent version of this item available.
[thumbnail of CoFe2O4-Fe_Nanocomposites.pdf] PDF
CoFe2O4-Fe_Nanocomposites.pdf
Restricted to Registered users only

Download (6MB) | Request a copy

Abstract

In this research, a CoFe2O4/Fe magnetic nanocomposite was successfully produced through mechanical alloying. The effects of different Fe concentrations (10, 30, and 50 wt %) and milling time (1, 3, 5, and 10 h) on the characteristics of the nanocomposite samples were systematically investigated. Single-phase CoFe2O4 nanoparticles were produced with a mean particle size of 60 nm and a saturation magnetization of 76 emu/g. The FESEM and HRTEM images confirm the heterostructure and particle size reduction of the CoFe2O4/30 wt% Fe nanocomposite after milling for 5 h. Also, the STEM-EDX signals of this nanocomposite sample revealed a uniform elemental distribution after 5 h of milling. The single-phase-like hysteresis loop and switching field distribution curves of 3-h milled nanocomposites containing 10 and 30 wt% Fe, revealed exchange coupling in the nanocomposite samples. This result was confirmed by simultaneous enhancements of the maximum energy product (BH)max and the remnant magnetization/saturation magnetization ratio (Mr/Ms). The (BH)max value of the CoFe2O4/10 wt% Fe nanocomposite after 3 h milling was 2.7 MGOe, which was about 1.8 times higher than that of single-phase CoFe2O4 nanoparticles. An epoxy-based nanocomposite fabricated with CoFe2O4/Fe segments exhibited magnetic losses in the X-band frequency range. The maximum reflection loss (−27 dB at 11.2 GHz frequency) for the CoFe2O4/30 wt% Fe nanocomposite milled for 10 h was 8 times greater than that of pure CoFe2O4 nanoparticles.
Item Type: Article
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Materials Science & Eng.
Sabancı University Nanotechnology Research and Application Center
Faculty of Engineering and Natural Sciences
Depositing User: Sirous Khabbazabkenar
Date Deposited: 21 Apr 2020 17:04
Last Modified: 26 Apr 2022 10:14
URI: https://research.sabanciuniv.edu/id/eprint/39851

Available Versions of this Item

Actions (login required)

View Item
View Item