Optical, electromagnetic, and thermal modeling of near-field radiative energy transfer from plasmonic nanoantennas to ta magnetic recording medium

Ünlü, Eren Seydi (2012) Optical, electromagnetic, and thermal modeling of near-field radiative energy transfer from plasmonic nanoantennas to ta magnetic recording medium. [Thesis]

[thumbnail of SeydiErenUnlu_442539.pdf] PDF
SeydiErenUnlu_442539.pdf

Download (1MB)

Abstract

Developments in nanotechnology have brought new challenges in heat transfer and temperature control in nanoscale devices. In this thesis, the electromagnetic and thermal behavior of plasmonicnanoantennas are investigated when they are illuminated with a focused beam of light and placed in the vicinity of thin film magnetic layer structures. To investigate this problem, optical, electromagnetic, and thermal models are developed and integrated. An optical modeling tool is developed to define a tightly focused beam of light by utilizing Richards-Wolf theory, which is primarily based on ray-tracing of optical beams. An electromagnetic modeling tool is used to analyze nano antennas and thin-film magnetic layers in terms of electric field and dissipated power distribution profiles. A thermal modeling tool is developed to control the temperature distribution on nanoantennas and thin film magnetic layer structures. Optical, electromagnetic and heat transfer modeling tools are integrated and simulations are conducted by generating script files using MATLAB codes. Electromagnetic and heat transfer analysis are conducted for dipole, bowtie and arrow shaped nanoantennas. The conditions to obtain single optical and hot spots on the thin film magnetic layer are presented. A novel nanoantenna type is proposed to improve thermal performance. It has been demonstrated that dipole, bowtie and a newly proposed arrow-shaped nano antennas show similar electromagnetic behaviors while the arrow-shaped nano antenna shows significant improvement in terms of temperature control which yields low antenna temperatures.
Item Type: Thesis
Uncontrolled Keywords: Plasmonics. -- Nano antenna. -- Optical. -- Electromagnetic. -- Thermal modeling. -- Nearfield radiative energy transfer. -- Temperature control. -- Radiative heat tranfer. -- Surface plasmons. -- Plasmonic nanoantenna. -- Plasmonik. -- Nano anten. -- Optik. -- Elektromanyetik. -- Termal modelleme. -- Yakın alan radyasyon enerji transferi. -- Sıcaklık kontrolü. -- Radyatif ısı geçişi. -- Yüzey plazmonları. -- Plasmonik nanoanten.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ163.12 Mechatronics
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Mechatronics
Faculty of Engineering and Natural Sciences
Depositing User: IC-Cataloging
Date Deposited: 12 Jul 2018 16:21
Last Modified: 26 Apr 2022 10:24
URI: https://research.sabanciuniv.edu/id/eprint/35004

Actions (login required)

View Item
View Item