Akkan, Can and Gülcü, Ayla (2018) A bi-criteria hybrid genetic algorithm with robustness objective for the course timetabling problem. Computers and Operations Research, 90 . pp. 22-32. ISSN 0305-0548 (Print) 1873-765X (Online)
PDF (Published article)
Akkan_Gülcü_COR_2017.pdf
Restricted to Registered users only
Download (905kB) | Request a copy
Akkan_Gülcü_COR_2017.pdf
Restricted to Registered users only
Download (905kB) | Request a copy
Official URL: http://dx.doi.org/10.1016/j.cor.2017.09.007
Abstract
Traditional methods of generating timetables may yield high-quality solutions, but they may not yield robust solutions that may easily be adapted to changing inputs. Incorporating late changes by making minimum modifications on the final timetable is an important need in many practical applications of timetabling. In this study, we focus on a subset of course timetabling problems, the curriculum-based timetabling problem. We first define a robustness measure for the problem, and then try to find a set of good solutions in terms of both penalty and robustness values. We model the problem as a bi-criteria optimization problem and solve it by a hybrid Multi-objective Genetic Algorithm, which makes use of Hill Climbing and Simulated Annealing algorithms in addition to the standard Genetic Algorithm approach. The algorithm is tested on the well known ITC-2007 instances and shown to identify high quality Pareto fronts.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Course timetabling; Robustness; Bi-criteria optimization; Genetic Algorithms |
Subjects: | T Technology > T Technology (General) > T055.4-60.8 Industrial engineering. Management engineering > T57.6-57.97 Operations research. Systems analysis |
Divisions: | Sabancı Business School Sabancı Business School > Operations Management and Information Systems |
Depositing User: | Can Akkan |
Date Deposited: | 10 Jan 2018 10:36 |
Last Modified: | 16 May 2023 16:05 |
URI: | https://research.sabanciuniv.edu/id/eprint/34143 |