Seer: a lightweight online failure prediction approach

Özçelik, Burcu and Yılmaz, Cemal (2016) Seer: a lightweight online failure prediction approach. IEEE Transactions on Software Engineering, 42 (1). pp. 26-46. ISSN 0098-5589 (Print) 1939-3520 (Online)

This is the latest version of this item.

[thumbnail of 07120143.pdf] PDF
07120143.pdf
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

Online failure prediction approaches aim to predict the manifestation of failures at runtime before the failures actually occur. Existing approaches generally refrain themselves from collecting internal execution data, which can further improve the prediction quality. One reason behind this general trend is the runtime overhead incurred by the measurement instruments that collect the data. Since these approaches are targeted at deployed software systems, excessive runtime overhead is generally undesirable. In this work we conjecture that large cost reductions in collecting internal execution data for online failure prediction may derive from pushing the substantial parts of the data collection work onto the hardware. To test this hypothesis, we present a lightweight online failure prediction approach, called Seer, in which most of the data collection work is performed by fast hardware performance counters. The hardware-collected data is augmented with further data collected by a minimal amount of software instrumentation that is added to the systems software. In our empirical evaluations conducted on three open source projects, Seer performed significantly better than other related approaches in predicting the manifestation of failures.
Item Type: Article
Uncontrolled Keywords: Online failure prediction; hardware performance counters; software quality assurance; software reliability
Subjects: Q Science > Q Science (General)
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Computer Science & Eng.
Faculty of Engineering and Natural Sciences
Depositing User: Cemal Yılmaz
Date Deposited: 12 Nov 2016 14:26
Last Modified: 26 Apr 2022 09:38
URI: https://research.sabanciuniv.edu/id/eprint/30466

Available Versions of this Item

Actions (login required)

View Item
View Item