Heat transfer enhancement with iron oxide nanoparticle based ferrofluids

Kurtoğlu, Evrim and Kaya, Alihan and Gözüaçık, Devrim and Acar, Funda Yağcı and Koşar, Ali (2013) Heat transfer enhancement with iron oxide nanoparticle based ferrofluids. In: 11th International Conference on Nanochannels, Microchannels, and Minichannels (ICNMM2013), Sapporo, Japan

This is the latest version of this item.

Full text not available from this repository. (Request a copy)

Abstract

Nanofluids are colloidal compounds, where the solid phase material is composed of nano sized particles, and the liquid phase can potentially be any fluid but aqueous media are common. As a common nanofluid type, ferrofluids are formed by holding solid nanoparticles in suspension by weak intermolecular forces and may be produced from materials with different magnetic properties. Heat transfer performance of ferrofluids is one of the crucial properties among many others that should be analyzed and considered for their wide range of applications. For this purpose, experiments were conducted in order to characterize heat transfer properties of ironoxide based ferrofluids flowing through a microchannel. In this study, convective heat transfer experiments were conducted in order to characterize convective heat transfer enhancements with Lauric acid coated ironoxide (Fe3O4) nanoparticle based ferrofluids, which have volumetric fractions between 0%–∼5% and average particle diameter of 25 nm, in a 2.5 cm long hypodermic stainless steel microtube with an inner diameter of 514 μm and an outer diameter of 819 μm. Heat fluxes up to 184 W/cm2 were applied to the system at three different flow rates (1ml/s, 0.62ml/s and 0.36 ml/s). Promising results were obtained from this study, which are suggesting the use of ferrofluids for heat transfer applications can be advantageous.
Item Type: Papers in Conference Proceedings
Additional Information: Paper No. ICNMM2013-73146
Uncontrolled Keywords: Heat transfer , Nanoparticles , Ferrofluids , Iron
Subjects: T Technology > T Technology (General)
R Medicine > R Medicine (General)
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Biological Sciences & Bio Eng.
Faculty of Engineering and Natural Sciences > Academic programs > Mechatronics
Faculty of Engineering and Natural Sciences > Academic programs > Materials Science & Eng.
Faculty of Engineering and Natural Sciences
Depositing User: Ali Koşar
Date Deposited: 09 Jan 2014 14:59
Last Modified: 26 Apr 2022 09:14
URI: https://research.sabanciuniv.edu/id/eprint/23599

Available Versions of this Item

Actions (login required)

View Item
View Item