Multi-function based modeling of 3D heterogeneous wound scaffolds for improved wound healing

Özbolat, İbrahim T. and Koç, Bahattin (2011) Multi-function based modeling of 3D heterogeneous wound scaffolds for improved wound healing. Computer-Aided Design & Applications, 8 (1). pp. 43-57. ISSN 1686-4360

This is the latest version of this item.

[thumbnail of CAD_8_1__43-57_published.pdf] PDF
CAD_8_1__43-57_published.pdf

Download (1MB)

Abstract

This paper presents a new multi-function based modeling of 3D heterogeneous porous wound scaffolds to improve wound healing process for complex deep acute or chronic wounds. An imaging-based approach is developed to extract 3D wound geometry and recognize wound features. Linear healing fashion of the wound margin towards the wound center is mimicked. Blending process is thus applied to the extracted geometry to partition the scaffold into a number of uniformly gradient healing regions. Computer models of 3D engineered porous wound scaffolds are then developed for solid freeform modeling and fabrication. Spatial variation over biomaterial and loaded bio-molecule concentration is developed based on wound healing requirements. Release of bio-molecules over the uniform healing regions is controlled by varying their amount and entrapping biomaterial concentration. Thus, localized controlled release is developed to improve wound healing. A prototype multi-syringe single nozzle deposition system is used to fabricate a sample scaffold. Proposed methodology is implemented and illustrative examples are presented in this paper.
Item Type: Article
Uncontrolled Keywords: Wound Healing, Wound Healing Scaffolds, Multifunction-based modeling, Feature-based Design
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA164 Bioengineering
R Medicine > R Medicine (General) > R856-857 Biomedical engineering. Electronics. Instrumentation
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Manufacturing Systems Eng.
Faculty of Engineering and Natural Sciences
Depositing User: Bahattin Koç
Date Deposited: 06 Jan 2011 15:17
Last Modified: 29 Jul 2019 14:36
URI: https://research.sabanciuniv.edu/id/eprint/16276

Available Versions of this Item

Actions (login required)

View Item
View Item