Özbolat, İbrahim T. and Koç, Bahattin (2011) Multi-function based modeling of 3D heterogeneous wound scaffolds for improved wound healing. Computer-Aided Design & Applications, 8 (1). pp. 43-57. ISSN 1686-4360
This is the latest version of this item.
PDF
CAD_8_1__43-57_published.pdf
Download (1MB)
CAD_8_1__43-57_published.pdf
Download (1MB)
Official URL: http://dx.doi.org/10.3722/cadaps.2011.43-57
Abstract
This paper presents a new multi-function based modeling of 3D heterogeneous porous wound scaffolds to improve wound healing process for complex deep acute or chronic wounds. An imaging-based approach is developed to extract 3D wound geometry and recognize wound features. Linear healing fashion of the wound margin towards the wound center is mimicked. Blending process is thus applied to the extracted geometry to partition the scaffold into a number of uniformly gradient healing regions. Computer models of 3D engineered porous wound scaffolds are then developed for solid freeform modeling and fabrication. Spatial variation over biomaterial and loaded bio-molecule concentration is developed based on wound healing requirements. Release of bio-molecules over the uniform healing regions is controlled by varying their amount and entrapping biomaterial concentration. Thus, localized controlled release is developed to improve wound healing. A prototype multi-syringe single nozzle deposition system is used to fabricate a sample scaffold. Proposed methodology is implemented and illustrative examples are presented in this paper.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Wound Healing, Wound Healing Scaffolds, Multifunction-based modeling, Feature-based Design |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) > TA164 Bioengineering R Medicine > R Medicine (General) > R856-857 Biomedical engineering. Electronics. Instrumentation |
Divisions: | Faculty of Engineering and Natural Sciences > Academic programs > Manufacturing Systems Eng. Faculty of Engineering and Natural Sciences |
Depositing User: | Bahattin Koç |
Date Deposited: | 06 Jan 2011 15:17 |
Last Modified: | 29 Jul 2019 14:36 |
URI: | https://research.sabanciuniv.edu/id/eprint/16276 |
Available Versions of this Item
-
Multi-function based modeling of 3D heterogeneous wound scaffolds for improved wound healing. (deposited 08 Dec 2010 10:56)
- Multi-function based modeling of 3D heterogeneous wound scaffolds for improved wound healing. (deposited 06 Jan 2011 15:17) [Currently Displayed]