Ünel, Mustafa and Soldea, Octavian and Özgür, Erol and Bassa, Alp (2010) 3D object recognition using invariants of 2D projection curves. Pattern Analysis and Applications, 13 (4). pp. 451-468. ISSN 1433-7541
This is the latest version of this item.
Official URL: http://dx.doi.org/10.1007/s10044-010-0179-5
Abstract
This paper presents a new method for recognizing 3D objects based on the comparison of invariants of their 2D projection curves. We show that Euclidean equivalent 3D surfaces imply affine equivalent 2D projection curves that are obtained from the projection of cross-section curves of the surfaces onto the coordinate planes. Planes used to extract cross-section curves are chosen to be orthogonal to the principal axes of the defining surfaces. Projection curves are represented using implicit polynomial equations. Affine algebraic and geometric invariants of projection curves are constructed and compared under a variety of distance measures. Results are verified by several experiments with objects from different classes and within the same class.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Recognition; Algebraic surfaces; Implicit polynomials; Invariants; Principal axes |
Subjects: | T Technology > T Technology (General) T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Faculty of Engineering and Natural Sciences > Academic programs > Mechatronics Faculty of Engineering and Natural Sciences |
Depositing User: | Mustafa Ünel |
Date Deposited: | 08 Nov 2010 16:49 |
Last Modified: | 25 May 2011 14:12 |
URI: | https://research.sabanciuniv.edu/id/eprint/15104 |
Available Versions of this Item
-
Identifying and comparing 3D surfaces using 2D projection curves. (deposited 24 Oct 2008 10:49)
-
3D object recognition using invariants of 2D projection curves. (deposited 18 Dec 2009 16:40)
- 3D object recognition using invariants of 2D projection curves. (deposited 08 Nov 2010 16:49) [Currently Displayed]
-
3D object recognition using invariants of 2D projection curves. (deposited 18 Dec 2009 16:40)