Su, Y. Senem and Öztürk, Levent and Çakmak, İsmail and Budak, Hikmet (2009) Turfgrass species response exposed to increasing rates of glyphosate application. European Journal of Agronomy, 31 (3 Sp. ). pp. 120-125. ISSN 1161-0301
PDF (This is a RoMEO green publisher - author can archive post-print (ie final draft post-refereeing))
2009_Turfgrass_species_response_exposed_to_increasing_rates_of_glyphosate.pdf
Download (775kB)
2009_Turfgrass_species_response_exposed_to_increasing_rates_of_glyphosate.pdf
Download (775kB)
Official URL: http://dx.doi.org/10.1016/j.eja.2009.05.011
Abstract
To investigate the response of nine turfgrass species exposed to increasing rates of glyphosate application, the dry matter production, visual leaf injury symptoms (e.g., chlorosis and necrosis) and the concentrations of shikimate and mineral nutrients were determined in shoots. The rates of foliar glyphosate application were 0%, 5% (1.58 mM), and 20% (6.32mM) of the recommended application rate for weed control. In general, there was a negative and weak correlation between the intensity of visual injury and relative decreases in shoot dry matter production caused by glyphosate application. The decreases in shoot dry matter production and the severity of leaf damage pronounced by increasing glyphosate rate showed a substantial variation among the turfgrass species. Of the turfgrass species tested, Festuca arundinacea ‘Falcon’ and Buchloe dactyloides ‘Bowie’were selected as the most tolerant and sensitive species to applied sublethal rates of glyphosate as judged from visual injury ratings, respectively. At the highest glyphosate rate, shoot dryweightwas decreased by 4-fold in Bowie and only 1.6-fold in Falcon. When glyphosatewas
not applied, shoot shikimate concentration of all species was very low and below 2.8mol g−1 FW (fresh weight). Glyphosate applications resulted in increases in shoot shikimate concentration with substantial
variations among species. At 6.32mM glyphosate treatment, shikimate concentration ranged between 156.1mol g−1 (F. rubra, Ambrose) and 16.5mol g−1 FW (F. rubra, Cindy Lou). However, the highly sensitive and the tolerant genotypes were not different in shoot shikimate concentrations. Even, in the case of some genotypes, high glyphosate tolerance is accompanied by higher shoot concentrations of shikimate. Depending on the turfgrass species and mineral nutrients tested, increasing glyphosate application either
did not affect or reduced mineral nutrient concentrations. In the case of decreases in shoot concentration of mineral nutrients, the decreases in Ca, Mg, Mn and Fe were most distinct. The results obtained indicate existence of a large genetic variation in tolerance to glyphosate toxicity among the turfgrass
species. This differential variation in tolerance to glyphosate could not be explained by the changes in shoot concentrations of shikimate and mineral nutrients.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS); Glyphosate; Mineral nutrients; Shikimate; Turfgrass |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) > TA164 Bioengineering S Agriculture > SB Plant culture > SB183-317 Field crops Q Science > QK Botany > QK710-899 Plant physiology |
Divisions: | Faculty of Engineering and Natural Sciences > Academic programs > Biological Sciences & Bio Eng. Faculty of Engineering and Natural Sciences |
Depositing User: | Levent Öztürk |
Date Deposited: | 03 Dec 2009 09:43 |
Last Modified: | 26 Apr 2022 08:33 |
URI: | https://research.sabanciuniv.edu/id/eprint/13146 |