Angular motion estimation and its application to the stabilization of a ballbot

Yavuz, Fırat (2016) Angular motion estimation and its application to the stabilization of a ballbot. [Thesis]

[thumbnail of Restricted to Repository staff only until 11.08.2019] PDF (Restricted to Repository staff only until 11.08.2019)
FiratYavuz_10121667.pdf

Download (15MB)

Abstract

Reliable angular motion estimation have received signi cant attention in recent years due to remarkable advances in sensor technologies and related requirements in many control applications including stabilization of robotic platforms. The goal of the stabilization control is to maintain the desired orientation by rejecting external disturbances. In this thesis, a novel master-slave Kalman lter is proposed where an extended Kalman lter (EKF) and a classical Kalman lter (KF) are integrated in a masterslave con guration to estimate reliable angular motion signals including Euler angles, rates and accelerations by fusing measurements of an inertial measurement unit (IMU). Estimated angular motion signals are used as feedback in both balancing and position control of a ballbot, which is a single spherical wheeled mobile platform driven with three omniwheels. An experimental ballbot system is designed and constructed for implementing estimation and control algorithms. Furthermore, nonlinear dynamical model of the ballbot is derived using Euler-Lagrange formulation, and balancing and position controllers are designed. Robustness of the controllers is achieved by employing cascaded control loops enhanced with acceleration feedback (AFB) to provide higher sti ness to the system. E ectiveness of the proposed fusion and control algorithms are validated by several simulations and experiments where performance comparison with a conventional PD controller is also made.
Item Type: Thesis
Additional Information: Yükseköğretim Kurulu Tez Merkezi Tez No: 444556.
Uncontrolled Keywords: Angular motion estimation. -- Euler angles. -- Angular rates. -- IMU. -- Sensor fusion. -- Kalman filter. -- Ballbot. -- Stabilization. -- Acceleration control. -- Balancing control. -- Açısal hareket kestirimi. -- Euler açıları. -- Açısal hızlar. -- IMU. -- Sensör fizyonu. -- Kalman filtresi. -- Ballbot. -- Stabilizasyon. -- İvme kontrolu. -- Dengeleme kontrolü.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ163.12 Mechatronics
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Mechatronics
Faculty of Engineering and Natural Sciences
Depositing User: IC-Cataloging
Date Deposited: 26 Apr 2018 23:15
Last Modified: 26 Apr 2022 10:18
URI: https://research.sabanciuniv.edu/id/eprint/34578

Actions (login required)

View Item
View Item