
ANGULAR MOTION ESTIMATION AND ITS

APPLICATION TO THE STABILIZATION OF

A BALLBOT

by

FIRAT YAVUZ

Submitted to

the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

SABANCI UNIVERSITY

August 2016





c© Fırat Yavuz 2016

All Rights Reserved



ABSTRACT

ANGULAR MOTION ESTIMATION AND ITS APPLICATION TO THE

STABILIZATION OF A BALLBOT

FIRAT YAVUZ

Mechatronics Engineering, M.Sc. Thesis, August 2016

Thesis Advisor: Prof. Dr. Mustafa Ünel

Keywords: angular motion estimation, Euler angles, angular rates, IMU, sensor

fusion, Kalman filter, ballbot, stabilization, acceleration control, balancing control

Reliable angular motion estimation have received significant attention in recent years

due to remarkable advances in sensor technologies and related requirements in many

control applications including stabilization of robotic platforms. The goal of the

stabilization control is to maintain the desired orientation by rejecting external dis-

turbances.

In this thesis, a novel master-slave Kalman filter is proposed where an extended

Kalman filter (EKF) and a classical Kalman filter (KF) are integrated in a master-

slave configuration to estimate reliable angular motion signals including Euler angles,

rates and accelerations by fusing measurements of an inertial measurement unit

(IMU). Estimated angular motion signals are used as feedback in both balancing

and position control of a ballbot, which is a single spherical wheeled mobile plat-

form driven with three omniwheels. An experimental ballbot system is designed and

constructed for implementing estimation and control algorithms. Furthermore, non-

linear dynamical model of the ballbot is derived using Euler-Lagrange formulation,

and balancing and position controllers are designed. Robustness of the controllers is

achieved by employing cascaded control loops enhanced with acceleration feedback

(AFB) to provide higher stiffness to the system. Effectiveness of the proposed fusion

and control algorithms are validated by several simulations and experiments where

performance comparison with a conventional PD controller is also made.



ÖZET

AÇISAL HAREKET KESTİRİMİ VE BİR BALLBOTUN

STABİLİZASYONUNDA KULLANIMI

FIRAT YAVUZ

Mekatronik Mühendisliği, Yüksek Lisans Tezi, Ağustos 2016

Tez Danışmanı: Prof. Dr. Mustafa Ünel

Anahtar Kelimeler: açısal hareket kestirimi, Euler açıları, açısal hızlar, IMU,

sensör füzyonu, Kalman filtresi, ballbot, stabilizasyon, ivme kontrolü, dengeleme

kontrolü

Güvenilir açısal hareket kestirimi, sensör teknolojilerindeki dikkate değer gelişmeler

ve robotik platformların stabilizasyonu gibi birçok kontrol uygulamasındaki ihtiyaçlardan

dolayı son yıllarda ciddi ilgi toplamıştır.

Bu tezde, ataletsel ölçüm birimi (AÖB) ölçümlerinin füzyonu ile Euler açılarını,

hızlarını ve ivmelerini içeren güvenilir açısal hareket kesitirimi için, genişletilmiş

bir Kalman filtresi (GKF) ve klasik bir Kalman filtresinin (KF) bir usta-yamak

biçiminde bütünleştirildiği özgün bir usta-yamak Kalman filtresi sunulmuştur. Ke-

stirilen açısal hareket sinyalleri, üç adet her yöne hareket edebilen çarklar ile sürülen

tek bir küresel tekerlekli seyyar bir platform olan ballbotun dengeleme ve konumlama

kontrolünde geribildirim olarak kullanılmıştır. Kestirim ve kontrol algoritmalarını

uygulamak için deneysel bir ballbot sistemi tasarlanıp üretilmiştir. Ayrıca, ball-

botun doğrusal olmayan dinamik modeli Euler-Lagrange formülasyonu kullanılarak

türetilmiştir ve dengeleme ve konumlama kontrolcüleri tasarlanmıştır. Kontrolcülerin

gürbüzlüğü, sisteme yüksek sertlik sağlamak için ivme geribildirimi ile güçlendirilmiş

iç içe geçmiş kontrol döngülerinin kullanımı ile sağlanmıştır. Önerilen füzyon ve kon-

trol algoritmalarının etkinliği benzetim ve deneylerle onaylanmış olup, konvensiyonel

PD kontrolörü ile performans karşılaştırması da yapılmıştır.



� Aileme ve dostlarıma �

v



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor Prof. Dr. Mustafa

Ünel for his guidance, constructive suggestions and support throughout this research.

I am grateful to him for helping me to broaden my horizon, not only in academic

field but also in personal manner.

I would gratefully thank Assoc. Prof. Dr. Kemalettin Erbatur and Assoc. Prof.

Dr. Şeref Naci Engin for their feedbacks and spending their valuable time to serve

as my jurors.

I would like to acknowledge the financial support provided by The Scientific and

Technological Research Council of Turkey (TÜBİTAK) through BİDEB 2228-A

scholarship.

I would like to thank all the members of Control, Vision and Robotics (CVR) re-

search group, Sanem Evren Han, Gökhan Alcan and Hammad Zaki for their pleas-

ant team-work and friendship. I am also grateful to all of the other members of the

Mechatronics Laboratory, especially to Yusuf Mert Şentürk, Wisdom Chukwunwike

Agboh, Hammad Munawar, Gökay Çoruhlu, Mehrullah Soomro, Osman Saygıner,

Sezen Yağmur Günay, Aykut Özgün Önol and Shoaib Imtiyaz Shaikh. They all

made my journey of master education pleasurable and joyful. Also many thanks

to M. İlker Sevgen and Cüneyt Genç for their positive attitude and companionship.

Furthermore, I am highly indebted to my bicycle RR 8.1. Every day, it accompanied

me on my trip to the university without minding.

I would like to thank Bedriye Salman and Hüseyin Hışıl for all their support in all

my choices. They have always encouraged me to pursue my dreams and follow my

heart. Through all challenges, they have been there for me.

Finally, I would like to thank my precious ones, my parents Asya and Munir Yavuz

and my brother Ömer Yavuz for all their love, caring and never ending support in

every instant of my life.

vi



Table of Contents

Abstract iii

Özet iv

Acknowledgements vi

Table of Contents vii

List of Figures xii

List of Tables xvi

List of Algorithms xviii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

vii



1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Survey and Background 8

2.1 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . 11

2.2 Sensor Fusion for Attitude Estimation . . . . . . . . . . . . . . . . . 13

2.2.1 Representing Attitude . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1.1 Coordinate Systems . . . . . . . . . . . . . . . . . . 16

2.2.2 Inertial Measurement Unit (IMU) . . . . . . . . . . . . . . . . 17

2.2.2.1 Gyroscope . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2.2 Accelerometer . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2.3 Magnetometer . . . . . . . . . . . . . . . . . . . . . 18

2.3 Sensor Fusion and Control . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Construction of Inertial Angular Velocity and Acceleration . . . . . . 19

2.5 Ballbots: Single Spherical Wheeled Mobile Platforms . . . . . . . . . 20

2.5.1 Design and Modeling . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Control Approaches . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Sensor Fusion Model 26

3.1 Sensor Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Gyroscope Modeling . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Accelerometer Modeling . . . . . . . . . . . . . . . . . . . . . 27

viii



3.1.3 Magnetometer Modeling . . . . . . . . . . . . . . . . . . . . . 28

3.2 EKF-based AHRS Using Euler Angles . . . . . . . . . . . . . . . . . 29

3.3 Master-Slave Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Master Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Slave Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Design and Construction of a Ballbot 38

4.1 Mechanical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Component and Material Selection . . . . . . . . . . . . . . . . . . . 42

4.2.1 Ball Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Drive Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Construction of the Prototype Ballbot . . . . . . . . . . . . . . . . . 44

4.4 Data Acquisition Hardware and Drivers . . . . . . . . . . . . . . . . . 46

4.5 Sensors and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . 47

4.5.2 Calibration and Tuning . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Real-time Control and Monitoring Software . . . . . . . . . . . . . . 48

5 Modeling and Control of the Ballbot 50

5.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.3 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



5.2 Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Energy Calculations . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Equation of Motion by Euler-Lagrange Derivation . . . . . . . 57

5.3 Control Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1 Balancing Control . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1.1 Balancing Control: Acceleration Feedback Approach 58

5.3.1.2 Balancing Control: Conventional PD Control . . . . 60

5.3.2 Position Control . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Torque Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Simulation and Experimental Results 64

6.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1.1 Sensor Fusion Simulator . . . . . . . . . . . . . . . . . . . . . 65

6.1.2 Ballbot Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.3 Simulation: Sensor Fusion Results . . . . . . . . . . . . . . . . 71

6.1.4 Simulation: Control Results . . . . . . . . . . . . . . . . . . . 78

6.1.4.1 Self-Balancing Results . . . . . . . . . . . . . . . . . 78

6.1.4.2 Trajectory Tracking Results . . . . . . . . . . . . . . 81

6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 Experimental: Sensor Fusion Results . . . . . . . . . . . . . . 83

6.2.2 Experimental: Control Results . . . . . . . . . . . . . . . . . . 90

7 Conclusion and Future Works 95

x



A Jacobian Matrices for Master-Slave Kalman Filter 98

B Ballbot Dynamics with AutoLev 105

Bibliography 111

xi



List of Figures

1.1 General representation of a ballbot. . . . . . . . . . . . . . . . . . . . 2

2.1 Block diagram showing the IMU assembly and its signals. . . . . . . . 17

2.2 CMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 TGU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Rezero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 NXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Overview of different Ballbots. . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Block diagram of the EKF-based AHRS. . . . . . . . . . . . . . . . . 30

3.2 Block diagram of the master-slave Kalman filter. . . . . . . . . . . . . 33

4.1 Motor bracket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Motor-omniwheel pin. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Final CAD design of the ballbot. . . . . . . . . . . . . . . . . . . . . 41

4.4 Omniwheel-actuator connection. . . . . . . . . . . . . . . . . . . . . . 43

4.5 Omniwheel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Final structure of the ballbot. . . . . . . . . . . . . . . . . . . . . . . 45

xii



4.7 Quanser Q8 Data Acquisition Card. . . . . . . . . . . . . . . . . . . . 46

4.8 Maxon LSC 30/2, 4-Q-DC Servo-amplifier in module housing. . . . . 46

4.9 IMU Brick 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Side view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Ballbot-omniwheels configuration. . . . . . . . . . . . . . . . . . . . . 51

5.4 Coordinate systems and body frames. . . . . . . . . . . . . . . . . . . 53

5.5 Parameters of the ballbot. . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Block diagram of the balancing controller with cascaded AFB. . . . . 59

5.7 Block diagram of the balancing controller with conventional PD. . . . 60

5.8 Block diagram of the position controller. . . . . . . . . . . . . . . . . 62

6.1 Block diagram of the IMU simulator. . . . . . . . . . . . . . . . . . . 66

6.2 True angular velocity in body frame. . . . . . . . . . . . . . . . . . . 67

6.3 True angular acceleration in body frame. . . . . . . . . . . . . . . . . 67

6.4 True angular jerk in body frame. . . . . . . . . . . . . . . . . . . . . 67

6.5 True Euler angles in inertial frame. . . . . . . . . . . . . . . . . . . . 68

6.6 True Euler rates in inertial frame. . . . . . . . . . . . . . . . . . . . . 68

6.7 True Euler accelerations in inertial frame. . . . . . . . . . . . . . . . 68

6.8 True linear acceleration in body frame. . . . . . . . . . . . . . . . . . 69

6.9 True magnetic flux in body frame. . . . . . . . . . . . . . . . . . . . . 69

6.10 Generated gyroscope measurement by IMU simulator. . . . . . . . . . 69

xiii



6.11 Generated accelerometer measurement by IMU simulator. . . . . . . . 70

6.12 Generated magnetometer measurement by IMU simulator. . . . . . . 70

6.13 Estimated angular velocity in the body coordinate system. . . . . . . 71

6.14 Estimated angular acceleration the body coordinate system. . . . . . 72

6.15 Estimated angular jerk the body coordinate system. . . . . . . . . . . 73

6.16 Comparison of drifted and true Euler angles. . . . . . . . . . . . . . . 74

6.17 Comparison of estimated and true Euler angles. . . . . . . . . . . . . 75

6.18 Estimated gyroscope biases and zoomed views. . . . . . . . . . . . . . 76

6.19 Comparison of estimated and true Euler rates. . . . . . . . . . . . . . 77

6.20 Comparison of estimated and true Euler accelerations. . . . . . . . . 78

6.21 External disturbances applied on the body through roll axis. . . . . . 79

6.22 Simulation results of the self-balancing: Body roll angle φb. . . . . . . 79

6.23 Simulation results of the self-balancing: Body pitch angle θb. . . . . . 80

6.24 External disturbances applied on the body through roll axis. . . . . . 81

6.25 Simulation results of the tracking: 2D position. . . . . . . . . . . . . 82

6.26 Gyroscope measurement by IMU. . . . . . . . . . . . . . . . . . . . . 83

6.27 Accelerometer measurement by IMU. . . . . . . . . . . . . . . . . . . 84

6.28 Magnetometer measurement by IMU. . . . . . . . . . . . . . . . . . . 84

6.29 Estimated and measured angular velocity in the body coordinate sys-

tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.30 Estimated angular acceleration in the body coordinate system. . . . . 85

6.31 Estimated angular jerk in the body coordinate system. . . . . . . . . 86

xiv



6.32 Comparison of drifted and measured Euler angles. . . . . . . . . . . . 86

6.33 Comparison of estimated and measured Euler angles. . . . . . . . . . 87

6.34 Estimated gyroscope biases. . . . . . . . . . . . . . . . . . . . . . . . 88

6.35 Estimated Euler rates from IMU measurements. . . . . . . . . . . . . 89

6.36 Estimated Euler accelerations from IMU measurements. . . . . . . . . 90

6.37 Experimental results of the self-balancing: Body roll angle φb. . . . . 91

6.38 Experimental results of the self-balancing: Body pitch angle θb. . . . 92

6.39 Experimental results of the self-balancing: Euler rates, φ̇b, θ̇b. . . . . 93

6.40 Experimental results of the self-balancing: Euler accelerations, φ̈b, θ̈b. 94

xv



List of Tables

4.1 Dimension of the ballbot and its subcomponents. . . . . . . . . . . . 45

5.1 Definitions and values of all the parameters used for modeling. . . . 56

6.1 Sensor simulator parameters. . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 RMS and maximum values of body angular acceleration estimation

errors after t = 5 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 RMS and maximum values of body angular jerk estimation errors

after t = 5 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 RMS and maximum values of Euler angles estimation errors. . . . . . 74

6.5 RMS and maximum values of gyroscope bias estimation errors be-

tween 10-15 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 RMS and maximum values of Euler angular rates estimation errors

between 1-40 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.7 RMS and maximum values of Euler angular acceleration estimation

errors between 1-40 sec. . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.8 Rise time and maximum deviation of body roll angle for both controllers. 80

6.9 RMS and maximum values of positional drift errors for both controllers. 82

6.10 RMS and maximum values of Euler angles estimation errors. . . . . . 87

xvi



6.11 Maximum, mean and variance of values of the estimated gyroscope

biases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.12 Rise time and maximum deviation of the body roll angle φb for both

controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.13 Rms and maximum of the body pitch angle between 5-35 seconds for

both controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.14 Rms and maximum values of the body Euler rates between 5-35 sec-

onds for both controllers. . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.15 Rms and maximum values of the body Euler accelerations between

5-35 seconds for both controllers. . . . . . . . . . . . . . . . . . . . . 94

xvii



List of Algorithms

3.1 EKF-based AHRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Master - Slave Kalman Filter . . . . . . . . . . . . . . . . . . . . . . 37

xviii



Chapter 1

Introduction

The attitude estimation of rigid body systems from sensor measurements has been

popular over the years and been used in many applications such as unmanned ve-

hicle control, platform stabilization, human motion tracking and underwater nav-

igation. Modern attitude heading reference systems (AHRS) are combination of

strapped-down multi-axis inertial sensors and microprocessors to provide an accu-

rate measurement of the orientation of a vehicle with respect to inertial frame by

using estimation algorithms to compute the attitude from several sensor measure-

ments. The recent developments in integrated circuits and micro-electro-mechanical

systems (MEMS) technology has facilitated production of low cost, light weight and

highly accurate inertial measurement units (IMU) and processors to be used in the

development of small and reliable AHRS devices for both research and industrial

applications. A typical IMU consists of a triad of orthogonal gyroscopes, accelerom-

eters and magnetometers on all 3-axis, that measure rotation rates, accelerations

and earth’s magnetic field respectively. Measuring the attitude angles by integrat-

ing angular rates measured by gyroscope is not feasible due to the drift problem

resulted from the accumulation of the bias errors. Since the individual use of these

1



sensors is not sufficient for reliable attitude estimation, usually a sensor fusion algo-

rithm is employed to combine individual sensor measurements to achieve estimation

results that are far better than those of a single sensor.

In recent years, inertial sensors have gained a great interest by the robotics society.

These sensors are key components for a robot that operates in its environment

where the robot must have accurate information about its current state such as

position, velocity, distance, altitude, attitude. In most type of robots, especially

in autonomous mobile robots, sensors empower the robot to work self-sufficiently,

and robustly. One of the fundamental necessities of an autonomous mobile robot

is to have good mobility and maneuverability in order to accomplish its task. The

fact is that wheels design plays an important role for these capabilities. Recent

research showed that more groups have been interested in improving the autonomous

navigation capability of mobile robotic systems, especially for omnidirectional mobile

robots. Research on omnidirectional and self-balancing mobile platforms has been

quite active in robotics and control communities in the last decade due to their

ability to freely move in all directions. There are two main types of omnidirectional

robots, the conventional wheeled structure and the special wheeled structure.

Figure 1.1: General representation of a ballbot.

2



Self-balancing mobile platforms with single spherical wheel, also known as ballbots,

are suitable example of special wheeled systems. In such systems, a body balances

and moves on a single ball which used as a replacement of conventional wheels to

achieve omnidirectional motion. Ballbots can be described as an inverted pendu-

lum mounted on a spherical wheel (see Figure 1.1). The spherical wheel is mostly

manipulated through rollers or wheels attached to the actuators on the body.

In summary, a ballbot can move spontaneously in any direction and must actively

balance on a single point of contact with the ground which reduces energy for motion

due to less friction but makes system to be inherently unstable. The developments

on ballbot broke out in a question: “How to preserve stability of the robot despite

all disturbances?”. A key component of this task is that the ballbot must have

accurate information about its current orientation which means that it should use

sufficient variety of sensors and fusion algorithms for extracting meaningful feedback

from those sensor measurements.

3



1.1 Motivation

The success of stabilization control largely depends on reliable angular motion feed-

back. In the literature, there are several research efforts done for robust stabilization

problem using angular motion signal, in particular acceleration feedback (AFB) sig-

nals. The primary objective of acceleration feedback control is rejecting disturbance

which manifests itself directly in the acceleration signal. However, the essence of the

task is obtaining a reliable angular motion feedback which is still a challenging is-

sue. Nowadays, obtaining reliable orientation angle is easily walkable. On the other

hand, obtaining angular velocity and acceleration signal by taking time derivatives

of measured position signals is not feasible to due to sensor noise amplification prob-

lems. Angular accelerometers directly measure angular accelerations; however they

are costly and produced by only a few manufacturers. Therefore, it is important

to develop novel angular motion estimation techniques which also estimates angular

velocities and accelerations.

In order to show the usability of estimated angular motion, ballbots are suitable

platforms due to their inherently unstable and profoundly nonlinear under-actuated

structure. After 2006, interest and research studies about ballbot platforms rose

rapidly and became an important constituent in both academic and commercial

applications. Although much progress has been made on the development on such

platforms, controlling motion while maintaining balance is a challenging task because

their under-actuated structure has fewer control inputs than their degrees of freedom.

Therefore, it is crucial to develop robust approaches for controlling the ballbot.

In the light of these discussions, the main motivation of this thesis is to estimate

reliable angular position, velocity and accelerations using newly formulated sensor

fusion algorithm, hereby to provide a solution to the ballbot stabilization problem

for improving the disturbance rejection properties and therefore the overall stabi-

lization accuracy by utilizing estimated values. In doing so, demonstration of the

4



effectiveness of the proposed fusion and control methods in both simulation and

experimental environments constitutes an important part of the motivation. The

ballbot model used in this work is motivated and inspired in part by the early work

of three omniwheeled ballbot designs for better control performance and reduced

friction [1, 2].

1.2 Contributions of the Thesis

Contributions of the thesis can be summarized as follows:

• A new master-slave type Kalman filter which employs both an extended Kalman

filter (EKF) and a classical Kalman filter (KF) is developed for estimating

reliable angular motion including Euler angles, Euler rates and Euler acceler-

ations.

• An experimental ballbot system is designed and constructed where sensor fu-

sion and control algorithms are assessed on the prototype ballbot.

• Cascaded position, velocity and current control loops enhanced with angular

acceleration feedback (AFB) signals are developed to provide robust perfor-

mance against the disturbances acting on the ballbot.

• 3D dynamic model of the designed ballbot is derived by considering the highly

nonlinear couplings and uncertainties in order to implement proposed control

algorithms in simulation environment.

• A high fidelity simulator is created which consists of the accurate models for

the ballbot system, controllers, inertial sensors (gyroscopes, accelerometers

and magnetometers), motion estimator and external disturbances.

5



1.3 Outline of The Thesis

Chapter 2 presents the literature survey and theoretical background for the angular

motion estimation techniques and ballbot platforms as well as a summary of existing

models and control methods. Chapter 3 details the derivation of the conventional

attitude and heading reference system and the proposed master-slave Kalman filter

algorithm, also the sensor models. Chapter 4 starts with the explanation of design

and construction of a ballbot platform and details the other components of the ex-

perimental setup. Chapter 5 details the derivation of dynamic model of a ballbot

and explains the fundamental design of the acceleration based cascaded controller,

PD controller and the position controller schemes. Chapter 6 presents simula-

tion and experimental results to validate the effectiveness of the proposed angular

motion estimation algorithm by using the estimated inertial angles, velocities and

accelerations as feedback signals in the stabilization control of a ballbot. Finally,

Chapter 7 includes an overall discussion of the work done and concluding remarks.

Possible future work that could not be covered inside the scope of this thesis is also

discussed.

6



1.4 Publications

• F. Yavuz, M. Unel, “Robust Balancing and Position Control of a Single Spher-

ical Wheeled Mobile Platform”, The 42nd Annual Conference of IEEE Indus-

trial Electronics Society (IECON 2016), Florence, Italy, October 24-27,2016

7



Chapter 2

Literature Survey and Background

In this chapter, the literature survey about angular motion estimation techniques

and ballbot platforms are presented. Topics that are closely related to the subject

of sensor fusion and working principles of ballbot examples from literature, which

serve as basic foundations of this thesis, are detailed here.

2.1 Sensor Fusion

In order to control a system for a specific task, it is necessary to know the internal

states that can not be measured directly. State estimation covers the theory and

tools to accurately determine these internal states from measurable sensor signals

using sensor fusion. This comes along with a major challenge, where the sensor

measurements are corrupted by noise. Sensor fusion covers various techniques and

algorithms, where the Kalman filter and its variations are most commonly preferred

in the literature. Kalman approaches also formed the basis of the proposed sensor

fusion work covered in this thesis.

8



In the following subsections, the principle of Kalman filtering are introduced. Quick

reviews, properties and equations for the generalized versions of Kalman Filter (KF)

and Extended Kalman Filter (EKF) are presented. Reference [3] can be consulted

for a detailed derivation and further information.

2.1.1 Kalman Filter

Kalman filter is a linear recursive mean squared error estimator that produces an

optimal estimate of a system state represented by a stream of noisy data. If the

modeled noise processes are Gaussian, it is the optimal state estimator, concerning

minimizing the error variance between true and estimated states. It is a well known

method for fusing sensor data in Attitude Heading and Reference System (AHRS)

applications, as it can be designed to estimate the orientation of a body as well as

sensor biases. In order to accomplish this task, it requires to know the measurement

noise, the noise of the input to the filter, also the noise of the process by assuming

all noises to be Gaussian distributed and with zero mean.

A standard Kalman filter requires a discrete time linear dynamic system model in

state space form, for xk is n× 1 state vector, given by:

xk = Fxk−1 +Buk + wk (2.1)

where F is a square symmetric state transition matrix, B is the input matrix and

uk is the input to the system. Also, wk is the Gaussian distributed process noise

with zero mean and with covariance Qk, i.e. wk ∼ N (0, Qk).

Observation or measurement zk of the true state is given as m× 1 vector

zk = Hxk + vk (2.2)

9



H is called measurement matrix to map the true state into the measured states and

vk is the measurement noise similarly Gaussian distributed with zero mean and with

covariance of Rk, i.e. vk ∼ N (0, Rk).

In order to proceed to Kalman filter stages, (F,H) must be a observable pair where

the observability matrix must have full rank of n, i.e. rank(O) = n.

O =
[
F FH . . . FHn−1

]T
(2.3)

In order to complete estimation task to achieve optimal state x̂k|k, Kalman filter

algorithm can be constructed as follows:

• Prediction Stage: We predict the state as

x̂k|k−1 = Fx̂k−1|k−1 +Buk (2.4)

where x̂k|k−1 is the predicted state at time k and x̂k−1|k−1 is the previously

estimated state.

• A Priori Covariance Stage: Then, a priori error covariance matrix Pk|k−1

is calculated based on the previous error covariance matrix Pk−1|k−1

Pk|k−1 = FPk−1|k−1F
T +Qk (2.5)

and Qk can be taken as constant diagonal matrix for most cases.

• Kalman Gain: The next step is to calculate the Kalman gain which is used

to exude how much we trust the innovation comes from measurements.

Kk = Pk|k−1H
T
(
HPk|k−1H

T +Rk

)−1
(2.6)

10



Where Rk is measurement noise covariance matrix, similarly can be taken as

constant diagonal matrix.

• Update Stage: To perform update, which corrects the state estimates based

on measurements, lets compute the residual between the measured state zk

and the predicted state x̂k|k−1, which is also called as innovation:

ȳk = zk −Hx̂k|k−1 (2.7)

Then, update the state as

x̂k|k = x̂k|k−1 +Kkȳk (2.8)

where x̂k|k is the optimal state at time k.

• A posteriori Covariance Stage: Finally, the last thing we will do is update

the a posteriori error covariance matrix,

Pk|k = (In×n −KkH)Pk|k−1 (2.9)

Initial value for the state x0|0 can be selected arbitrarily and estimation covariance

matrix P0|0 can be can be selected as positive definite diagonal square matrix with

fairly large values.

2.1.2 Extended Kalman Filter

Many practical systems have nonlinear process and/or measurement dynamics due

to their nature. In order to employ Kalman Filters to those nonlinear models, the

Extended Kalman Filter (EKF) was developed. The EKF is based on linearization

of process and measurement models in terms of the current estimated state.

11



The most common representation of nonlinear systems in the continuous-time state

space form at the continuous time t. given as

ẋ(t) = f (x(t), u(t)) + w(t) (2.10)

z(t) = h (x(t)) + v(t) (2.11)

where f is a nonlinear state dynamics as a function of the current state x(t) and the

input u(t), h representing a nonlinear measurement model. And w(t) and v(t) are

the Gaussian distributed process noise with zero mean and with covariances Q(t)

and R(t), respectively.

w(t) ≈ N (0, Q(t)) , Q(t) = E[w(t)w(t)T ] (2.12)

v(t) ≈ N (0, R(t)) , R(t) = E[v(t)v(t)T ] (2.13)

Then, the system is linearized about the estimated state vector x(t). Hence the

continuous-time linearized system can be represented as:

ẋ(t) = A(t)x(t) +B(t)u(t) + w(t) (2.14)

z(t) = C(t)x(t) + v(t) (2.15)

where:

• A(t) : Jacobian of f (x(t), u(t)) wrt x(t).

• B(t) : Jacobian of f (x(t), u(t)) wrt u(t).

• C(t) : Jacobian of h (x(t)) wrt x(t).

In plain words, B(t) is not need to be calculated, because ẋ(t) will be formed from

f (x(t), u(t)).

12



Finally, Kalman Filters are generally implemented in the discrete-time as in Sec-

tion 2.1.1, thus the above continuous-time process model must be converted to dis-

crete time. For this purpose continuous-time linearized dynamics model and process

noise matrices, A(t) and Q(t) are converted into the discrete-time state transition

matrix, Fk, and discrete-time process noise covariance matrix, Qk by using the Van

Loan method [4].

Linearized discrete-time model obtained as

xk = Fkxk +Bkuk + wk, E
(
wkw

T
k

)
= Qk (2.16)

zk = Hkxk + vk, E
(
vkv

T
k

)
= Rk (2.17)

Estimation task can be done as in Section 2.1.1, by calculating Jacobian matrices

Fk and Hk evaluated at the current state estimate at each step.

2.2 Sensor Fusion for Attitude Estimation

The attitude estimation of rigid body systems from sensor measurements has been

popular over the years and been used in many applications such as unmanned ve-

hicle control, platform stabilization, human motion tracking and underwater navi-

gation [5–7]. Modern attitude heading reference systems (AHRS) are combination

of strapped-down multi-axis inertial sensors and microprocessors to provide an ac-

curate measurement of the orientation of a vehicle with respect to inertial frame by

using estimation algorithms to compute the attitude from several sensor measure-

ments. The recent developments in integrated circuits and micro-electro-mechanical

systems (MEMS) technology has facilitated production of low cost, light weight and

highly accurate inertial measurement units (IMU) and processors to be used in the

development of small and reliable AHRS devices for both research and industrial

13



applications. A typical IMU consists of a triad of orthogonal gyroscopes, accelerom-

eters and magnetometers on all 3-axis, that measure rotation rates, accelerations

and earth’s magnetic field respectively. Since the individual use of these sensors is

not sufficient for reliable attitude estimation, usually a sensor fusion algorithm is

employed to combine individual sensor measurements to achieve estimation results

that are far better than those of a single sensor. For example, gyroscopes have

high bandwidth and does operate in a fast manner. Measuring the attitude angles

by integrating angular rates measured by gyroscope is not feasible due to the drift

problem resulted from the accumulation of the bias errors. On the other hand,

accelerometers have low bandwidth and therefore they provide relatively accurate

roll and pitch angles from the components of the gravity vector in a slow manner.

Similarly, determining yaw angle from the components of the earth’s magnetic field

using a magnetometer is a drift-free, but, slow process. To obtain fast and accurate

attitude angles, outputs of inertial sensors must be fused by sensor fusion.

The development of efficient estimation algorithms that can accurately estimate the

orientation of a rigid body from a strapped-down IMU sensors has attracted the

attention of many researchers. One of the first studies for attitude estimation pro-

vided by Wahba in 1965, was a mathematical problem related to finding the optimal

rotation matrix where the solution gives an algebraic estimate based on the vector

observations using a least squares technique without filtering process [8]. Later, var-

ious techniques such as the Singular Value Decomposition (SVD) [9] and Quaternion

Estimation (QUEST) [10] were developed to tackle the attitude estimation problem.

Kalman filters are the most extensively used sensor fusion methods for the majority

of attitude estimation algorithms that employ IMU. Kalman filter has so many

variations such as Extended Kalman filter (EKF), Unscented Kalman filter (UKF)

and Adaptive Kalman filter (AKF). EKF is the nonlinear version of the classical

Kalman filter [11, 12]. Kim and Golnaraghi used an Extended Kalman Filter to fuse

signals from a low cost IMU to estimate the orientation. A quaternion based process

14



model is used to avoid the problem of singularities in Euler angle representations.

Simulation and experimental results show that the filter tracked the roll, pitch and

yaw angles quite accurately and significantly corrected the yaw angle error drift [13].

Sabatini presented a quaternion based Extended Kalman Filter for estimating the

three dimensional orientation of a rigid body. Simulations and experiments are done

to evaluate the algorithm performance especially under the critical observability

conditions [14]. Li and Wang proposed an effective Adaptive Kalman Filter to

integrate low cost MEMS accelerometers, MEMS gyroscopes and magnetometers

with an Attitude and Heading Reference System (AHRS) [15]. Literature includes

several studies where the signals from the same sensors can be processed and fused

properly to get angular motion information. One of the common approach is the

estimation of angular motion using gyro-free IMU, where the angular motion vector

is produced by using 12 separate single axis linear accelerometers [16]. In addition

to the cited works, attitude estimation includes many alternatives in the current

literature as discussed in the survey [17], where virtually all techniques have a similar

structure with rotational rate gyroscope data being fused with vector observations

of the gravitational and/or magnetic fields.

2.2.1 Representing Attitude

This section explains necessary layout of coordinate systems required for representing

attitude. The attitude or orientation generally indicates how a coordinate system

is aligned with respect to another one. In literature, most common representations

are Euler angles and quaternions.

The most well-known approach to represent the attitude of a body is vector of Euler

angles. The Euler angles are three dimensional attitude representation presented

by Leonhard Euler to portray the attitude of a rigid body. A few arrangements of

Euler angles are so generally utilized that they have names and notations that have

15



turned out to be a piece of the normal speech such as the symbols φ, θ and ψ are

used for names of roll, pitch, and yaw of a body [18]. However, the three dimensional

attitude parameterizations have singularity and Euler angles where φ and ψ along

with their derivatives are not well-defined for θ = ±π
2
. These insufficiencies in the

Euler angles have driven researchers to utilize quaternions as a parametrization of

the orientation. Where the unit quaternions have no singularities and well defined

for the integration of the angular velocity of a body.

In spite of the singularity problem, in our work, we will define the orientation of a

body by using Euler angles. Because the working range of the controlled body pitch

angle will not reach to θ = ±π
2

for simulations and experiments. Additionally, the

accompanying definitions and properties for these representations are utilized from

[19].

2.2.1.1 Coordinate Systems

We consider the relationships between data expressed in two different coordinate

systems.

• A body-fixed coordinate system is need to be defined in order to describe

the orientation of an object. It is rigidly attached to the objects geometry and

moves with the object as it moves or rotates.

• Also, an inertial coordinate system is usually defined as a non-moving, non-

rotating coordinate. A common choice is an earth-fixed coordinate system

with North-East-Down (NED) convention.

16



2.2.2 Inertial Measurement Unit (IMU)

In recent years, advances in the development of micro-electromechanical systems

(MEMS) have significantly improved the cost-performance ratio of inertial sensors

such as gyroscopes, accelerometers and magnetometers that measure angular ve-

locities, linear accelerations and earth’s magnetic field, respectively. An inertial

measurement unit (IMU) is a package of those inertial sensor that consists of a

triad of orthogonal gyroscopes, accelerometers and magnetometers on all 3-axis (see

Figure 2.1).

IMU

Gyroscope

Accelerometer

Magnetometer

T
b b b b

a x y zf f f f

T
b b b b

m x y zH H H

   
T

b b b b

g x y z   

Figure 2.1: Block diagram showing the IMU assembly and its signals.

In practice, due to their mechanical and electrical natures, MEMS inertial sensors

are frequently mixed with two types of errors, deterministic and stochastic errors

[20]. Deterministic errors mostly include stable and repeatable biases, which can

be eliminated through some suitable calibration. However, stochastic errors are

based on multiplicative or additive measurement noises that can not be eliminated

via simple calibration. The bias is commonly constant error that observed in the

accelerometer and gyroscope measurements when there is no input acceleration or

rotation. In the following subsections, sensor subsystems of an IMU are briefly de-

scribed, however the detailed mathematical modeling of those sensors are presented

in Section 3.1.

17



2.2.2.1 Gyroscope

Gyroscopes or angular rate sensors measures rotation rate around fixed axes with

respect to inertial frame then expressed in the sensor coordinate system. They are

used extensively in the applications of inertial navigation, robotics, aerospace and

automotive. There are several factors to consider when evaluating a gyroscope, such

as bias, scale factors, random angular walk and alignment error. Bias error occurs

when the sensor is laying still and if it has not got zero mean on all axes. Scale factors

are related to the conversion from analog sensor measured voltages to rotation rate.

Random angular walk is the phenomena that is experienced when the angular rate

measurements are integrated to get the angle.

2.2.2.2 Accelerometer

Accelerometers are one the main component of an inertial measurement unit (IMU).

Accelerometers measure specific forces though a sensitive axis in the body frame.

Working principle of an accelerometer is based on Newton’s first law, where an ob-

ject at rest stays at rest and a moving object stays in motion unless attracted by

an unbalanced force. The accelerometer can be utilized to evaluate orientation of

the body. Beside orientation, in mobile robotic applications, accelerometer mea-

surements can be used to determine the position of the robot by dead-reckoning for

indoor implementations. Bias error occurs in accelerometer measurements as well.

2.2.2.3 Magnetometer

A magnetometer measures the heading and the intensity of the magnetic field around

the sensor. Although the magnetometers are mentioned as an additional sensor for

IMU, nowadays they are necessary part of an IMU used for detection of yaw angle.

In mobile robotic applications, a magnetometer can be utilized to calculate heading

18



of the robot where the heading is determined by measuring the horizontal component

of Earths magnetic field vector.

2.3 Sensor Fusion and Control

Attitude estimation methods, mentioned in previous sections, are generally used

in conventional control of the stabilized platforms which are becoming increasingly

popular in different application areas such as target identification, security and de-

fense, gun-turret control and mobile omnidirectional robots. All of these applica-

tions require highly precise stabilization because small angular displacements may

cause large position errors or failures. The goal of the stabilization control is to

maintain the desired orientation by rejecting external disturbances due to terrain

changes, high-frequency vibrations and sudden shocks, wind and other environmen-

tal factors. Stabilization control performance largely depends on reliable angular

motion feedback. Sensor fusion techniques can be used to enhance the robustness

and stability of those systems against sensor failure.

2.4 Construction of Inertial Angular Velocity and

Acceleration

The success of stabilization control largely depends on reliable angular velocity and

acceleration feedback, besides angular position. However, obtaining reliable velocity

and acceleration signal is difficult. In the straightforward method, obtaining an

angular velocity and acceleration signals by taking time derivatives of measured

position and velocity signals. Although it is proposed in papers [21, 22], obtaining

acceleration from position signal with double differentiation creates exceptionally

weak results due to sensor noise amplification problems. On the other hand, there

19



are some angular accelerometers to directly measure angular accelerations; however

they are costly and produced by only a few manufacturers.

Several methods have been proposed in the literature to estimate angular accel-

eration. Han et al. [23] proposed a Newton Predictor Enhanced Kalman Filter

(NPEKF) to estimate angular accelerations. This estimator provides a wide band-

width and a small phase lag of the estimated acceleration while attenuating noises.

Moreover, some estimation techniques are provided by using gyro-free IMU [16, 24–

26]. Those methods only use linear accelerometer measurements have been devel-

oped to estimate angular velocities and accelerations. However, they rely only on

low bandwidth linear accelerometers and do not employ high bandwidth gyro mea-

surements.

2.5 Ballbots: Single Spherical Wheeled Mobile

Platforms

Research on omnidirectional and self-balancing mobile platforms has been quite ac-

tive in robotics and control communities in the last decade due to their ability to

freely move in all directions on the horizontal plane. Self-balancing mobile platforms

with single spherical wheel, also known as ballbot platforms, are suitable example

of special wheeled omnidirectional robots. In such systems, a body balances on a

single ball which used as a replacement of conventional wheels to achieve omnidirec-

tional motion. The spherical wheel is mostly manipulated through rollers or wheels

attached to the actuators on the body. In summary, single spherical wheeled mobile

platforms must actively balance on a single point of contact with the ground which

reduces energy for motion due to less friction but makes system to be inherently

unstable. Beside being a research valuable topic, single spherical wheeled platforms

are aimed to perform missions as accompanying handicapped or elder people to

20



move around (e.g. in hospitals, museums, supermarkets), furthermore as a vehicle

for personal transportation [27].

Single spherical wheeled platforms have been popular over the years, and many re-

searchers have already paid attention on modeling, design and construction of such

systems. The first ball balancing robot called ERROSphere (Equilibrating Robot

Rolling On Sphere) [28], was presented by Havasi in 2005, merely can balance on the

ball without any further functionality. B.B.Rider [27] was another omnidirectional

robot stabilizes on a basketball developed by Endo et al. However, they provided

only the design and did not presented any experimental results. Initial implementa-

tion on ballbot type robots, actually an inverted pendulum mounted on a spherical

wheel, started in 2006.

Figure 2.2:
CMU

Figure 2.3:
TGU

Figure 2.4:
Rezero

Figure 2.5:
NXT

Figure 2.6: Overview of different Ballbots.

The first example of the ballbot morphology constructed in Carnegie Mellon Uni-

versity in the United States by Lauwers et. al [29] as human size ballbot which

has an inverse mouse-ball drive mechanism to actuate the ball and can interact

with humans. Although the robot with the inverse mouse-ball driven mechanism

worked well, it could not rotate around yaw axis. During the following years, many

other version of the inverse mouse-ball driven ballbots were developed by adding

21



yaw control and different features such as stabilizer legs [30] and functional arms

[31, 32] (see Figure 2.2). Later on, many other configurations are developed by

using different actuating systems. Most commonly, omniwheels driven by motors

are used in many applications for better control performance. Researchers in the

Tohoku Gakuin University (TGU) in Japan developed a much more smaller ballbot

(see Figure 2.3) as compared to CMU’s one with three omniwheels and [1]. It is

main difference was that it can also perform yaw motion. In 2009, a 20 cm length

small ballbot [33] developed in The University of Adelaide (UA) in Australia by

using LEGOTM Mindstorms NXT components (see Figure 2.5) which has only two

wheels to drive the ball like the inverse mouse-ball driven ones. Among all, the

Rezero [2, 34] (see Figure 2.4) is the most famous one, to the best of our knowledge,

developed in 2010 at ETH Zurich in Switzerland with three omniwheels which has

a high dynamic robustness.

Moreover, novel actuating mechanisms are presented in [35] as partially sliding rollers

and in [36] spherical induction motor ball wheel designed exclusively for a ball bal-

ancing mobile robots. Initial results for the ballbot with a special induction motor

ball wheel are presented in [37]. Additionally, several commercial ventures were

exhibited from research to commercialization with the Rezero [34] for omniwheel

structure and the mObi for inverse mouse-ball drive structure.

2.5.1 Design and Modeling

Essentially, all ballbot designs are based on the same principle where the manipu-

lation of the ball through rollers or wheels attached to the actuators on the body

standing on the ball. As mentioned before, there were mainly two types of the

ballbot design: the inverse mouse-ball driven mechanism and omniwheels driven

mechanism.

22



The first proposed actuation idea for such systems was the inverse mouse-ball de-

sign, either using two rollers [33] or four rollers [29]. Although the ballbot with

the inverse mouse-ball driven mechanism worked well, it could not rotate around

yaw axis. During the following years, many other version of the inverse mouse-ball

driven ballbots were developed by adding yaw control and different features such as

stabilizer legs [30] and functional arms [31, 32]. In other versions, omniwheels are

used to actuate the ball for better control performance and reduced friction [1, 2, 34].

In these omniwheeled ballbots,the body includes three or four single-row omniwheel

driven by independent dc motors which are equally placed each other at the bottom.

Modeling of a ballbot platform is crucial in order to be able to rapidly develop

and tune the controllers and also test them without actually using the experimental

setup. Planar system modeling has been commonly used in the initial studies on the

ballbot by dividing the 3D system into the independent planar models by neglecting

coupling effects between these models [29, 30, 32, 33, 38]. Two of those planar

models are identical and the third one describes the rotation around the z-axis

in the body fixed reference frame. When modeling these 2D planes, the vertical

planes are assumed to be independent. The dynamical model obtained by neglecting

coupling effect is much simpler than a 3D model. In order to provide pure nonlinear

model of a ballbot, more realistic mathematical models are presented by taking into

account all coupling effects. In [38], besides derivation of 2D model, a 3D model of a

ballbot is also presented where the calculations are separated into multiple, smaller

computations and evaluated by using Mathematica. Inal et al. [39] developed a

nonlinear 3D model for a ballbot using unit quaternions to represent rigid body

rotations.

23



2.5.2 Control Approaches

Although much progress has been made on the development on spherical wheeled

mobile platforms, controlling motion while maintaining balance is a challenging task

because their underactuated structure has fewer control inputs than their degrees of

freedom. In the literature, various balancing and positioning control algorithms for

ballbot platforms were presented. The most common approach for controlling both

the orientation and the position of the ballbot is LQR (Linear-quadratic regulator)

based state feedback control. In [29], the ballbot controller consisted of an inner

PI (Proportional+Integral) control loop for controlling angular velocity of the ball

and an outer LQR based full state feedback control loop. Later on, in [30, 40] these

controllers were replaced by PID (Proportional+Integral+Derivative) controller for

both balancing and tracking set points. In [1], inputs of the plant were decoupled so

that simple linear PD controllers were used to control virtual wheels. Then virtual

accelerations were converted into the velocities of three omniwheeled stepping mo-

tors by using kinematic relations. Differently, Rezero is controlled by quasi-nonlinear

feed-forward control using the idea of gain scheduling [34]. In [39, 41] inverse dynam-

ics controller is used to cancel out accelerations on body attitude degrees of freedom,

in combination with a PD controller to stabilize the body angles and the position.

Another important issue is the path following control for the ballbot, which ensures

that the robot to follow a path while maintaining balance. Initial research in position

control of the ballbot focused on station keeping where the postural stabilization by

an outer loop using LQR [29] or PID [30]. These approaches were successful in re-

alizing station keeping and slow line following. In [31, 40] dynamic constraint-based

optimal shape planner is used to plan shape trajectories which are used as reference

for the body angles during tracking for the inverse mouse-ball driven ballbot. In [42],

the tuning of linear controllers by LMIs is presented to provide robustness against

some parametric uncertainties in the system by using MatlabTM model of LEGOTM

Mindstorms NXT ballbot.

24



In the aforementioned methods, LQR and PID controllers can also get the optimal

results but were not sufficiently robust for balancing purpose to handle sudden de-

viations due to the external disturbances or highly inclined initial conditions. On

the other hand using nonlinear controller is quite complicate because of the complex

structure of the dynamic equation of the ballbot. Therefore, the development of

robust approaches for controlling the ballbot type platforms is important.

25



Chapter 3

Sensor Fusion Model

In this chapter, detailed derivation and equations of fusion algorithms and modeling

of inertial sensors will be presented.

3.1 Sensor Modeling

As mentioned earlier, in this work, a three-axis IMU will be considered, composed of

three axis accelerometers, three axis rate gyroscopes and, finally, three axis magne-

tometers. MEMS inertial sensors (gyroscopes, accelerometers and magnetometers)

are modeled by corrupting the true sensor measurements with sensor errors. In

practice, due to their mechanical and electrical natures, MEMS inertial sensors are

frequently mixed with two types of errors: deterministic and stochastic errors [20].

The development of the deterministic and stochastic error model for an inertial sen-

sor is one of the most important steps for building a reliable navigation system.

Deterministic errors mostly include stable and repeatable biases, which can be elim-

inated through some suitable calibration. However, stochastic errors are based on

multiplicative or additive measurement noises that can not be eliminated via simple

26



calibration. In this work, random noises are assumed to be drawn from a normal

distribution.

3.1.1 Gyroscope Modeling

Gyroscopes measure angular rates in the body frame. The true angular rates about

the body axes, denoted as vector ωb0 =
[
ωb0x ω

b
0y ω

b
0z

]T
, can be simply determined

from true Euler angles and rates using the inverse velocity transformation matrix E

as:

ωb0 =


ωb0x

ωb0y

ωb0z

 = EΩ0 =


1 0 sin θ0

0 cosφ0 cos θ0 sinφ0

0 − sinφ0 cosφ0 cos θ0



φ̇0

θ̇0

ψ̇0

 (3.1)

Then, gyroscope output can be modeled as:

ωbg = ωb0 + bg + ηg (3.2)

where bg and ηg represent the gyro biases and noises.

3.1.2 Accelerometer Modeling

Accelerometers measure specific forces in the body frame. These forces are the total

accelerations relative to free-fall and represented by fa. It is assumed that IMU is

attached to the body center and earth rotation effects are neglected. Then, the true

specific forces are computed in the inertial frame as follows:

fn0 =
d

dt
V n + g, g =


0

0

−9.81

 (3.3)

27



where V̇ n denotes a vector of the translational accelerations of the body and g is the

acceleration due to gravity. Since accelerometers measure the specific forces in the

body frame, fn0 is multiplied by the rotation matrix, Rb
n, to transform from inertial

to body frame as shown in (3.4).

f b0 = Rb
nf

n
0 = Rb

n

d

dt
V n +Rb

ng (3.4)

Usually V n is assumed to be constant and therefore V̇ n = 0. Then, (3.4) is expressed

as:

f b0 = Rb
ng =


−g sin θ

g cos θ sinφ

g cosφ cos θ

 (3.5)

where φ and θ are the roll and pitch angles. The output of the accelerometer is

modeled as:

f ba = f b0 + ba + ηa (3.6)

where ba and ηa define the accelerometer biases and noises.

3.1.3 Magnetometer Modeling

Magnetometers measure the strength of the magnetic fields in the body frame. The

magnetometer output is modeled as:

Hb
m = Hb

0 + bm + ηm (3.7)

where Hb
0 defines the true magnetometer measurements in the body frame, bm and

ηm represent the magnetometer biases and noises.

28



3.2 EKF-based AHRS Using Euler Angles

Conventional sensor fusion methods based on Kalman filter estimate Euler angles

and the gyroscope biases [17]. The state vector is defined as follows:

x =
[
φ θ ψ bgx bgy bgz

]T
=
[
ΘT bTg

]T
(3.8)

where Θ ≡
[
φ θ ψ

]T
represent Euler angles (roll, pitch and yaw) and the gyro-

scope biases are denoted by bg ≡
[
bgx bgy bgz

]T
.

The relationship between the Euler rates Ω =
[
φ̇ θ̇ ψ̇

]T
and the angular veloc-

ity of the body ω =
[
ωx ωy ωz

]T
is formed by velocity transformation matrix.

Multiplying this matrix by the angular velocity in the global coordinates results in

the Euler rates vector [19]. The nonlinear process dynamics is described using this

kinematic relationship as:

Ω = Bω (3.9)

where B is the velocity transformation matrix and defined as:

B =


1 sinφ tan θ cosφ tan θ

0 cos θ − sinφ

0 sinφ sec θ cosφ sec θ

 (3.10)

With respect to the state vector (3.8), the following continuous-time process dynam-

ics is used as

d

dt
x =

Θ̇

ḃg

 =


B
(
ωbg − bg

)
03×1

+ w (3.11)

29



b

g

b

af

b

m

IMU

ˆ

ˆ
gb

E
K

F-
b

a
se

d
 A

H
R

S

Gyroscope

Accelerometer

Magnetometer

Figure 3.1: Block diagram of the EKF-based AHRS.

where

ωbg =
[
ωbgx ω

b
gy ω

b
gz

]T
(3.12)

bg =
[
bgx bgy bgz

]T
(3.13)

and the measurement vector provides sufficient observability as

z =
[
f ba ψm

]T
(3.14)

where

f ba =
[
f bax f

b
ay f

b
az

]T
(3.15)

and ψm is calculated from magnetometer measurements as

ψm = tan−1
Hb
my

Hb
mx

(3.16)

30



The overall algorithm for EKF-based AHRS is provided in Algorithm 3.1.

Algorithm 3.1 EKF-based AHRS

if t = 0 then initialize
n = 6
x̂0|0 = rand(n, 1), P0|0 = 100× In×n

while f ba 6= ∅ ‖ ωbg 6= ∅ ‖ Hm 6= ∅ do
procedure x̂m = EKF (f ba, Hm, ω

b
g)

prediction at t = tk
ˆ̇xk|k = f

(
x̂k|k, ω

b
g − b̂g

)
x̂k+1|k = x̂mk|k + ˆ̇xk|kdt

Pk+1|k = ΦkPk|kΦ
T
k +Qk

update

Kk = Pk+1|kΓ
T
k

(
ΓkPk+1|kΓ

T
k +R

)−1

zk =
[
f ba ψm

]T
k

x̂k+1|k+1 = x̂k+1|k +Kk

(
zk − ŷk+1|k

)
Pk+1|k+1 = (In×n −KkΓk)Pk+1|k

b̂g = x̂k+1|k+1(3 : 6)

3.3 Master-Slave Kalman Filter

In this section, a novel sensor fusion method for reliable angular motion estimation

using a master-slave Kalman filter is presented. It employs both an extended Kalman

filter (EKF) and a classical Kalman filter (KF) in a master-slave configuration. In

order to estimate the angular position, velocity and acceleration, the state of the

EKF is extended to include both Euler rates and accelerations in addition to Euler

angles. Gyro biases are also included into the state vector. While the EKF feeds

the KF with the estimated gyro biases, the KF estimates bias compensated angular

velocity, acceleration and jerk signals in the body frame and sends back to the EKF.

31



The state vector in (3.8) is extended to include angular velocities and accelerations;

i.e.

x =
[
φ θ ψ φ̇ θ̇ ψ̇ φ̈ θ̈ ψ̈ bgx bgy bgz

]T
=
[
ΘT ΩT ΓT bT

]T
(3.17)

where Γ ≡
[
φ̈ θ̈ ψ̈

]T
defines Euler accelerations.

In accordance with the new state vector (3.17), the following continuous-time process

dynamics is obtained by differentiating the nonlinear dynamics in (3.9):

d

dt
x =



Θ̇

Ω̇

Γ̇

ḃg


=



Bω

Ḃω + Bα

B̈ω + 2Ḃα + Bγ

03×1


+ w (3.18)

where angular accelerations and jerks are denoted by ω̇ ≡ α =
[
αx αy αz

]T
and

α̇ ≡ γ =
[
γx γy γz

]T
in the body coordinate frame.

Also, the measurement vector extended by using angular velocities, ω̂, and acceler-

ations, α̂ estimated by KF which provides sufficient observability as:

z =
[
f ba ψm ω̂ α̂

]T
(3.19)

Non-deterministic effects and modeling errors are represented by the process noise,

w. In (3.18), gyro biases are assumed to be constant. This model is known as a

Wiener process and can be considered as a special case of Gauss-Markov process

[43].

32



Slave 
Estimator

KF

b

g

b

af

b

m

IMU

ˆ

ˆ

ˆ

ˆ
gb

Master Estimator

EKF

Master-Slave Kalman Filter

ˆ
gb




̂ ̂ ̂
Gyroscope

Accelerometer

Magnetometer

Figure 3.2: Block diagram of the master-slave Kalman filter.

Remark 1. Gyro biases can also be modeled using Singer Model. This model

assumes that the gyro bias is a zero-mean stationary first order Markov process [26].

The continuous time bias model is defined as:

ḃg = −βbg + w (3.20)

where w is a zero mean white noise and β is the reciprocal of the time constant.

Note that β = 0 implies constant bias model.

To estimate the state vector x in (3.17), an extended Kalman filter that utilizes

sensor measurements will be implemented. To run the EKF, we need to compute ω,

α and γ that appear on the right hand side of (3.18). Since there are no additional

sensors to measure angular accelerations and jerks, they need to be estimated from

gyro measurements. To this end, a slave type Kalman filter (KF) is introduced to

estimate ω, α and γ using bias compensated gyro readings. Since biases will be

estimated by EKF and used as inputs to the KF, we have a master-slave config-

uration in Figure 3.2 where the master estimator (EKF) feeds the slave estimator

(KF) with bias estimates and the slave estimator returns estimated angular velocity,

accelerations and jerks to the master estimator.

33



3.3.1 Master Estimator

Process dynamics of the master estimator is given by (3.18). Applying Euler’s

forward discretization to the process dynamics leads to:

Θ

Ω

Γ

bg


k+1

=



Θ

Ω

Γ

bg


k

+ T



Bω

Ḃω + Bα

B̈ω + 2Ḃα + Bγ

03×1


k

+ wk (3.21)

where T is the sampling period. Measurement vector of the master estimator con-

tains the specific force measurements, f ba, from accelerometer and the yaw angle,

ψm, determined from the resolved components of the magnetic field measurements,

Hb
m, in the horizontal plane along the heading axis [44]. In order to increase the

observability of the state vector, the measurement vector of EKF is also extended

by using angular velocities, ω̂, and accelerations, α̂ estimated by KF:

zk =
[
f ba ψm ω̂ α̂

]T
k

=


Rb
n(Θ)g

ψ

EΩ

EΓ + ĖΩ


k

+ vk (3.22)

34



where Rb
n is the rotation matrix from the inertial frame to the body frame and is

given as:

Rb
n =


cosψ cos θ cos θ sinψ − sin θ

cosψ sinφ sin θ − cosφ sinψ cosφ cosψ + sinφ sinψ sin θ cos θ sinφ

sinφ sinψ + cosφ cosψ sin θ cosφ sinψ sin θ − cosψ sinφ cosψ cos θ


g is the gravitational acceleration vector and vk is the measurement noise. The

inverse velocity transformation matrix E is defined as:

E = B−1 =


1 0 sin θ

0 cosφ cos θ sinφ

0 − sinφ cosφ cos θ

 (3.23)

As it is seen from (3.21) and (3.22), the process and measurement models of the

master estimator are nonlinear. Since the EKF is based on the linearization of the

nonlinear system, the functions (3.21) and (3.22) are linearized around the current

estimated state vector x using the partial derivatives of the process and measure-

ment functions. The state transition and measurement matrices F and H were

found by a direct computation, which is performed by using the symbolic MatlabTM

computational tool to find the matrices in terms of the states. F and H matrices

are provided in Appendix A.

3.3.2 Slave Estimator

The slave estimator provides estimates of angular velocities, accelerations and jerks

to the master estimator. The following process dynamics is constructed in discrete

time, based on the classical laws of motion using Taylor series where angular jerks

35



are assumed to be constant:
ω

α

γ


k+1

=


I3×3 TI3×3 0.5T 2I3×3

03×3 I3×3 TI3×3

03×3 03×3 I3×3



ω

α

γ


k

+ wsk (3.24)

where T is the sampling period and wsk is the process noise. The gyro bias estimated

by the EKF is subtracted from the gyro readings to obtain bias compensated body

angular velocity, ωbg − b̂g =
[
ωbgx − b̂gx ω

b
gy − b̂gy ω

b
gz − b̂gz

]T
, which is used as the

measurement for the slave estimator:

ysk = ωbgk − b̂gk =
[
I3×3 03×6

]
ω

α

γ


k

+ vsk (3.25)

where vsk is the noise vector associated with the measurement process. A classical

Kalman filter (KF) is employed to estimate angular velocity (ω), acceleration (α)

and jerk (γ) using process and measurement models given by (3.24) and (3.25),

respectively.

36



The overall algorithm for Master-Slave Kalman filter is provided in Algorithm 3.2.

Algorithm 3.2 Master - Slave Kalman Filter

if t = 0 then initialize
nm = 12, ns = 9
x̂m0|0 = rand(nm, 1), Pm0|0 = 100× Inm×nm

x̂s0|0 = rand(ns, 1), Ps0|0 = 100× Ins×ns

while f ba 6= ∅ ‖ ωbg 6= ∅ ‖ Hm 6= ∅ do
procedure x̂m = EKF (f ba, Hmag, ω

b
g)

master prediction at t = tk
ω = x̂sk|k(1 : 3), α = x̂sk|k(4 : 6), γ = x̂sk|k(7 : 9)

ˆ̇xmk|k = f
(
x̂mk|k , ω, α, γ

)
x̂mk+1|k = x̂mk|k + ˆ̇xmk|kdt

Pmk+1|k = Φmk
Pmk|kΦT

mk
+Qmk

master update

Kmk
= Pmk+1|kΓTmk

(
Γmk

Pmk+1|kΓTmk
+Rm

)−1

zmk
=
[
f ba ψm ω̂ α̂

]T
k

x̂mk+1|k+1
= x̂mk+1|k +Kmk

(
zmk
− ŷmk+1|k

)
Pmk+1|k+1

= (Inm×nm −Kmk
Γmk

)Pmk+1|k

b̂g = x̂mk+1|k+1
(10 : 12)

procedure x̂s = KF(ωbg, b̂g)
slave prediction at t = tk
x̂sk+1|k = Φsk x̂sk|k
Psk+1|k = ΦskPsk|kΦT

sk
+Qs

slave update

Ksk = Psk+1|kΓTsk

(
ΓskPsk+1|kΓTsk +Rs

)−1

x̂sk+1|k+1
= x̂sk+1|k +Ksk

(
zsk − ŷsk+1|k

)
Psk+1|k+1

= (Ins×ns −KskΓsk)Psk+1|k

37



Chapter 4

Design and Construction of a

Ballbot

This chapter details the structural design and electro-mechanical construction of

a ballbot platform. The design process includes mechanical design of the ballbot

by means of CAD (Computer-aided design) tools, investigation of the components

and materials as well as testing the compatibility of each component. Additionally,

construction of the ballbot includes manufacturing of the precisely modeled parts,

testing each electronic hardware and building up the full scale ballbot by integration

of all subcomponents in accordance with the CAD design.

Design objectives are given as follows:

• Drive mechanisms with omniwheels have to be placed with 120◦ between each

other to form a triangle from top view.

• Each omniwheel should touch to the ball on a single point with 45◦ angle with

respect to the center of the ball.

38



• Body has to be symmetric and its center of the mass should be close enough

to the ball.

• The overall design should have durable structure and feasible dimensions.

In summary, the design and construction of the ballbot are conducted as:

• Building a CAD design of the prototype ballbot

• Selection of a ball and drive mechanism components.

• Checking whether if the selected components are dimensionally compatible in

CAD software.

• Completing the CAD model to analyze modeling parameters (mass, inertia,

dimensions) and revising the CAD model if necessary.

• Purchasing the decided components.

• Design the body structures (plate diameters and rod lengths) and connectors

(motor bracket and pins) by considering ball and drive mechanism dimensions

to meet design objectives.

• Manufacturing of the structural components using subtractive manufacturing

tools. (e.g. CNC)

• Assembling the final ballbot by mounting all the components.

4.1 Mechanical Design

The mechanical design of the ballbot starts with CAD design that will be used as a

guide for construction process. Especially, with the aid of CAD modeling, the size

39



of the subcomponents will be calculated precisely and thus manufactured easily. Be-

sides, CAD model makes it easy to precisely calculate the moment of inertia of each

component. To this end, a 3D CAD model of the ballbot is created in SolidWorks.

The ball is assumed to be an homogeneous hollow sphere and the omniwheels are

modeled as solid disks. The structural part of the body consists of three paral-

lel circular plates and rods to connect these plates to each other. The sensors, dc

motors, gear heads, brackets and pins are also modeled. The material of each part,

from screws to beams are properly defined for components from SolidWorks material

library.

In CAD design, several possible ball sizes were considered and dimensioning of other

parts are done by considering the ball driving mechanism dimensions. Following

this, structural components of the body are designed in a way that to meet the

angle specifications as well as exactly fit all driving mechanism components into the

body. The body of the ballbot itself is alike cylinder, which is designed to have same

moment of inertias on both x and y axis. As a most important structure of the body,

lower plate is modeled with a specific diameter of 174.46 mm to make the zenith

angle of the omniwheel to be center of the ball. Two plates were used for the upper

part of the body have 250 mm diameter, as this was determined to be compatible

with overall appearance. Also, the linkages between the plates were designed using

130 and 100 mm length rods. The design guarantees that the ballbot does not seem

too short or too long. In fact, it has suitable size to with those plates which can be

used to carry the other required components.

It is important to note that the selected Maxon DC motor has a shaft of diameter

5 mm, and length of 12.8 mm. which are not enough to support the omniwheels.

Therefore, a pin extension must be designed to connect the motor shaft to the

omniwheel in a way that the motor can drive the omniwheel without slipping. The

motor bracket are made of a 5 mm sheet that has the holes for the mounting of

lower plate of the body and the each dc motor. Furthermore, it is bended with an

40



Figure 4.1: Motor
bracket.

Figure 4.2: Motor-
omniwheel pin.

angle of 135◦ to make the omniwheel contact points to be on zenith angle α (see

Figure 4.1).

Finally, the arrangement of these parts was completed and assembled. In the fol-

lowing Figure 4.3, the final CAD design is presented,

Figure 4.3: Final CAD design of the ballbot.

41



4.2 Component and Material Selection

We selected components to fulfill the following criteria:

- The structural components should have enough load capacity, light weight, durable

material.

- The driving mechanism should have sufficient torque to drive the ball.

4.2.1 Ball Selection

As a starting point, the balls used in ballbot systems are investigated, then an ap-

propriate one was searched in order to suffice high stiffness, weight and homogeneity.

In literature, different types of balls have been employed in ballbot constructions.

In most of the applications [1, 27], a basketball was used as spherical wheel which

was not convenient due to insufficient weight and stiffness. In further ballbots, a

bowling ball with or without rubber-coated is used [1, 33] but a bawling ball is

generally quite heavy and not homogenized. In successfully implemented ballbots

[29, 34], they produced their own balls either by coating a spun aluminum shell

or two milled aluminum hollow half spheres with polyurethane which is extremely

costly as compared to others. Finally, a ball type called “medicine ball” is found in

a sports market with suitable size and mass. In our ballbot design, the medicine ball

(see Figure 4.6), around 3 kg and with 10.8 cm radius, is preferred which provides

better inertia and resistance than basketball.

4.2.2 Drive Mechanism

Drive mechanism of the ballbot consists of an omniwheel, a dc motor with gear-

box and mechanical connectors such as pins and motor brackets. Starting point for

42



design of drive mechanism was to find dc motors with sufficient torque. High perfor-

mance brushed Maxon RE26 DC Motor is selected, which has 27.7 mNm maximum

continuous torque and 24 V nominal voltage. In order to increase maximum torque,

the low torque level of those dc motors has required to usage of a gearbox, which is

selected as Planetary Gear-head GP 26B with 19 : 1 gear ratio.

Omniwheels, the interfaces between the driving motors and the ball, are critical to

the success of a ballbot. In our ballbot, a special type of omniwheel produced by

Nexus Robot is selected with diameter of 100 mm and aluminum structured. The

omniwheel has a series of rollers connected with an angle to its circumference. The

rotation axes of the rollers are parallel to the circumference of the omniwheel. This

arrangement of rollers makes possible the omniwheel to move in both the rotational

and the perpendicular direction of the omniwheel. Particularly, the selected omni-

wheel has smaller rollers in the gaps between the main larger rollers which gives a

smooth transition between the rollers. As seen in Figure 4.4, each wheel will directly

attach to the shaft of the motors.

Figure 4.4: Omniwheel-actuator connec-
tion.

Figure 4.5: Omni-
wheel.

43



4.3 Construction of the Prototype Ballbot

Final structure of the ballbot is assembled by mounting all the components using

screws and bolds. In order to place the motors properly and connect the omniwheels

to motor shafts, the motor brackets and pins are precisely assembled with specific

angle from 7075-T6 aluminum alloy by a CNC machine. This forms a very durable

structure, as at least a few crashes were expected during balancing experiments.

The rest of design strongly depends on ball size. Following this, the main part

of the ballbot, is called body, is constructed using manufactured subcomponents.

The structural part of the body consists of three parallel poly methyl methacrylate

(PMMA) (also known as Plexiglas) circular plates with 5 mm thickness and alu-

minum rods to connect these plates to each other. Plates were manufactured on

laser cutting machine by considering the the drawings and aluminum rods were cut

from sigma profiles with 20 mm thickness. To put it clearly, the lower plate, which

the motors will be fixed, will be placed at a specific height to make the zenith angle

of the omniwheel to be center of the ball. The inertial measurement unit is rigidly

connected to the center of the weight of the body, i.e. strapped down. Later, a data

acquisition board equipped with the micro-controller and drivers were connected to

the drive mechanism and encoders by flexible cables. In our design the controllers

and the drivers are placed separate from the ballbot body. However, in most of the

ballbot implementations in the literature, the controllers and drivers are mounted

to the main body, which is planned for future work.

44



The overall constructed ballbot is obtained by including all components as shown

in Figure 4.6.
 

Motor with gearhead IMU

MU 

Ball 
Omniwheel 

Encoder 

Figure 4.6: Final structure of the ballbot.

Overall dimensions of the ballbot are given in Table 4.1.

Table 4.1: Dimension of the ballbot and its subcomponents.

Description Value / Unit

Overall ballbot length and width 445 mm - 300 mm

Overall ballbot weight 5400 g

Diameter of the ball 216 mm

Diameter of each omniwheel 100 mm

The height of the center of mass of body 185 mm

Diameter of the lower plate 174.46 mm

Diameter of the upper plates 250 mm

Length of the rods 130 mm - 100 mm

Omniwheel-ball configuration angles α = 45◦, β = 120◦

45



4.4 Data Acquisition Hardware and Drivers

Quanser Q8 is the data acquisition card used with the real-time computer to establish

the interface between the computer and the actuators/sensors. It has enough number

of Digital/Analog inputs/outputs and encoder inputs with 16-bit resolution.

Figure 4.7: Quanser Q8 Data
Acquisition Card.

Figure 4.8: Maxon LSC 30/2,
4-Q-DC Servo-amplifier in mod-

ule housing.

Additionally, Maxon LSC 30/2, 4-Q-DC Servo-amplifiers are used in order to drive

the dc motors used in the assembly. These drivers are used in the torque mode in

our ballbot system, in which the driver takes analog reference signal in between ±10

V and proportionally generates current in the motor windings, therefore acts as a

torque controller. This configuration enables implementation of speed and position

loops outside of the servo drive.

The encoders are connected through RS232 on the motor side and 5 pin DIN connec-

tor on the data acquisition card side. Furthermore, communication between data

acquisition card and the motor drivers is achieved by means of RCA connectors

where the outer part of the connector is connected to ground and the inner portion

of the connector carries the signal. All the connections to the real-time computer,

from both the data acquisition card and IMU, were done via Type A USB 2.0 con-

nector. The power source used for motor drivers is Kesupower S201-24 24 V DC

power supply with maximum 8.5 A.

46



4.5 Sensors and Calibration

In the ballbot, there are two main types of sensors as encoders and inertial mea-

surement unit (IMU). The encoders are selected simply to be compatible with the

selected dc motors as Avago HEDS-5540 with resolution up to 1024 counts per rev-

olution. Selection of the IMU was done according to two main criteria where the

IMU must be cost-effective and resistant to the external disruptive magnetic sources

such as dc motors.

4.5.1 Inertial Measurement Unit

For the present work the MEMS inertial sensor, TinkerForge IMU Brick 2.0 is used

(see Figure 4.9), which is very compact and cost-effective inertial measurement unit

that equipped with a 3-axis accelerometer, magnetometer (compass) and gyroscope

with 100Hz sampling rate. Its main advantages are reduced cost, cost-effective

resolution, easier recalibration and to be directly readable by USB. Besides being

cheap and cost-effective, it has a wide range of programming interface tools.

Figure 4.9: IMU Brick 2.0

47



4.5.2 Calibration and Tuning

Calibration procedure for the inertial measurement unit is done using corresponding

software as follows:

• Gyroscope: The IMU is placed in a single stable position for a period of several

seconds.

• Accelerometer: The IMU is placed in six different stable position for a period

of a few seconds by using slow movement between stable positions where at

least one position that is perpendicular to the inertial x, y and z axis.

• Magnetometer: Calibration procedure is done by calibrating magnetometer by

making random movements (e.g. write a figure 8 in air).

It is necessary to readjust and tune the Kalman filter when it is associated with the

experimental ballbot system. The process noise covariance Q and the measurement

noise covariance R are main parameters for the tuning. Fortunately, the selection

of R is relatively easy that can be calculated from a variance of sample series of

measurement. Q is a covariance matrix associated with the noise in states but

finding out Q is not so obvious. It is generally determined intuitively but there are

some points that need to be regarded choosing it, that is why it is done by trial and

error.

4.6 Real-time Control and Monitoring Software

A PC with D2700 dual core 2.13 GHz processor and 2 GB RAM, running under

Microsoft Windows 7 operating system is used for both the real-time control and

signal monitoring. Visual StudioTM software is used to create a kernel for real-time

48



applications on a windows based system and enabling the user to monitor the signals.

Also, Matlab/SimulinkTM is used for data inspection and creates plots from saved

data. Additionally, in order to access to the IMU brick 2.0 and Quanser Q8, Brick

Deamon v2.2.2 and Quarc 2.4 softwares are installed.

49



Chapter 5

Modeling and Control of the

Ballbot

Nonlinear dynamics of the ballbot and control schemes are briefly described in this

chapter. Planar system modeling has been commonly used in the initial studies

of the ballbot by dividing the 3D system into the independent planar models by

neglecting coupling effects between these models [29, 30, 32, 33, 38]. Be that as it

may, it is still valuable to derive the 2D models to get a subjective comprehension of

the dynamics of a ballbot. In this thesis, all coupling effects are taken into account

in the 3D mathematical model of the ballbot.

5.1 Model Description

Generally, a ballbot consists of two main components: a spherical ball and an upper

body placed on top of it. The model used in this thesis is three omniwheeled

morphology where the body includes three single-row omniwheel driven by three

independent dc motors which are placed with β degree between each other at the

50



bottom as presented in Figure 5.2. In this arrangement, each omniwheel has a

contact point with the ball, as shown in Figure 5.1, where the contact points are

located at the zenith angle, α.

z



y

Figure 5.1: Side view.



y

x

...

Figure 5.2: Top view.

Figure 5.3: Ballbot-omniwheels configuration.

It is assumed that omniwheels can only apply forces to the ball in the tangential di-

rection of its own rotation in the body reference system. Omniwheels are wheels with

small rollers around the periphery which are perpendicular to the turning direction,

where the ball and the body interact with each other through those omniwheels.

5.1.1 Inputs and Outputs

The inputs of the system are the three control torques τ =
[
τ1 τ2 τ3

]T
which are

generated by the motors and transformed by the omniwheels to the ball and external

disturbances τd =
[
τdx τdy τdz

]T
acting on the body.

The system has ten outputs which include the body angular position Θb =
[
φb θb ψb

]T
and velocity Ωb =

[
φ̇b θ̇b ψ̇b

]T
, and the ball angular position Θk =

[
φk θk

]T
and

velocity Ωk =
[
φ̇k θ̇k

]T
. Since the system has several inputs and outputs, it can be

regarded as a Multiple Input, Multiple Output (MIMO) system.

51



5.1.2 Assumptions

In order to derive the complete dynamical model of the ballbot, several assumptions

have to be made. In literature, existing works [32, 33, 38] has assumptions which

are commonly based on the same principles as listed below.

In our model, the 3D mathematical model of the ballbot is derived by taking into

account all coupling effects under the following assumptions:

• The model consists of five rigid bodies (see Figure 5.5):

– 1 body with dc motors and gear heads

– 1 spherical ball

– 3 omniwheels

• The ball moves only horizontally in a pure rolling motion without jumping.

• Contacts between the ball and omniwheels are assumed to be slippage-free.

• Contact between the ball and floor is assumed to be slippage-free.

• Omniwheels are assumed to be simplified without rolling or kinetic friction.

• The floor is assumed to be perfect flat without any deformation.

5.1.3 Coordinates

Coordinate frames are used to describe the position of the ball and the orientation

of the body. As seen in Figure 5.4, the inertial reference frame is denoted by N ,

middle reference frame at the center of the ball M , ball fixed frame as K, and finally

the body fixed frame as B.

52



x

y

z

M

M

x

y
z

N

N

N

N
M

Figure 5.4: Coordinate systems and body frames.

The representations of the rotation between coordinate frames are defined by using

three dimensional attitude parameterizations, i.e., Euler angles. The system can

be described with five DoF (Degrees of Freedom). 3 DoF for the body rotation

ΘN
b = (φb, θb, ψb) represent the roll, pitch and yaw angles of the body respectively

with respect to N . 2 DoF for the the ball angles ΘM
k = (φk, θk) with respect to fixed

frame M at the center of the ball. Since the working range of the ballbot platform

pitch angle will not reach to θb = ±π
2
, the singularity problem associated with Euler

angle parametrization does not have to be considered.

53



5.2 Dynamic Equations

The dynamics of the ballbot can be derived using the Euler-Lagrange approach sim-

ply by calculating the kinetic and potential energy of each body which has previously

been performed by [29, 30, 39]. In order to derive the Euler-Lagrange equations of

motion, a minimal coordinates q is selected to include following set of variables that

fully defines the system:

q =
[
φb θb ψb φk θk

]T
(5.1)

This method defines the Lagrangian L (q, q̇) which is simply the sum of the kinetic

energies minus the potential energy of the system, as shown in (5.2).

L (q, q̇) = Tb + Tk + Tw1 + Tw2 + Tw3 − Vb (5.2)

Where Tb and Tk represent the sum of the translational and rotational kinetic ener-

gies of the body and the ball respectively. Twi
represents rotational kinetic energies

of omniwheels and motors, and Vb is the sum of the potential energy of the body

includes motors and omniwheels.

5.2.1 Energy Calculations

For each rigid body, translational, rotational and potential energies must be calcu-

lated. The reference plane with zero potential energy is assumed to be at the center

of the ball. The numerical results of these calculations are only valid if the dynamics

are a very good approximation of the actual ballbot dynamics. On account of this,

the physical parameters of the ballbot are presented in Table 5.1 and Figure 5.5

shows the corresponding rigid bodies, where these parameters are selected to be

consistent with sizing and material selection of our ballbot design in Chapter 4.

54



The mass and moment of inertia of the rigid parts of the ballbot are calculated and

verified from the CAD model mentioned in Section 4.1 and relevant data sheets.

, ,,b x y zm I

,w wm I

,k km I
kr

wr

Metin

Metin

L

Figure 5.5: Parameters of the ballbot.

Body

The kinetic energy of the body consists of a translational, a coupling and a rotational

part. The kinetic energy of the body is defined as:

Tb =
1

2
mbv

2
b︸ ︷︷ ︸

translational

+ mbvb

(
ωb ×

−→
L
)

︸ ︷︷ ︸
coupling

+
1

2
Ix,y,zω

2
b︸ ︷︷ ︸

rotational

(5.3)

where
−→
L denotes the vector from the center of the ball to the center of the body.

The potential energy of the body is calculated as follow

Vb = −mb
−→g
−→
L for −→g =

[
0 0 −g

]T
(5.4)

At this point it is important to note that above potential energy includes the po-

tential energies of motors and omniwheels.

55



Table 5.1: Definitions and values of all the parameters used for modeling.

Parameter Description Value

mb Mass of the body 2.39615 kg

mk Mass of the ball 3 kg

mw Mass of each omniwheel 0.25 kg

L The height of the center of mass of body 0.185 m

rk Radius of the ball 0.108 m

rw Radius of each omniwheel 0.05 m

Ix, Iy Inertia of the body around x and y axis 0.10354 kgm2

Iz Inertia of the body around z axis 0.020929 kgm2

Ik Inertia of the ball 0.019814 kgm2

Iw Inertia of omniwheels 0.003329 kgm2

α Omniwheel-ball configuration angle 45◦

β Angle between omniwheels 120◦

Ball

The kinetic energy of the ball consists of a translational and a rotational part. The

kinetic energy of the ball is defined as:

Tk =
1

2
mkv

2
k︸ ︷︷ ︸

translational

+
1

2
Ikω

2
k︸ ︷︷ ︸

rotational

(5.5)

Since the ball moves horizontally, its potential energy is always zero, i.e. Vk = 0.

Wheels

Lastly, rotation of the omniwheels and the motor shafts around their axis is consid-

ered in the following kinetic energies

Twi
=

1

2
Iwω

2
wi

for i = 1, 2, 3 (5.6)

56



5.2.2 Equation of Motion by Euler-Lagrange Derivation

The equations of motion are derived by solving the Lagrange equation in time t to

find the torques that directly control the minimal coordinates τq which are related

to the motor torques τ with kinematic relations.

d

dt

(
∂L

∂q̇

)T
−
(
∂L

∂q

)
= τq (q, τ) (5.7)

Overall, resulting in non-linear equations of motion in compact form is obtained as

M (q) q̈ + C (q, q̇) q̇ +G(q) = τq (5.8)

At this point it is important to note that these calculations could not be done

directly. All energy equations described above are calculated, as well as solution for

the Lagrange equation is found by using a dynamic symbol manipulation software

package AutolevTM [45]. The equations of motion for the system described above are

obtained from software as a set of nonlinear, differential equations consist of many

terms. Therefore, the overall Autolev model and detailed explanations are referred

in Appendix B.

5.3 Control Schemes

In this section, the design of a balancing controller is discussed by using two dif-

ferent approaches: cascaded acceleration feedback (AFB) control and conventional

Proportional-Derivative (PD) control for the system developed in previous section.

Also a brief description of the position controller is provided.

57



5.3.1 Balancing Control

The balancing controller is obviously the most important controller for the ballbot

platforms due to their inherently unstable and profoundly nonlinear under-actuated

structure. The balancing controller maintains the body at reference body angles.

In most of the applications, the body reference angles are zero for achieving com-

plete balancing task. It is unfortunate that the ballbot orientation angles are not

directly actuated, but the ballbot accomplishes the orientation tracking circuitously

by actuating the ball with desired torques. These desired control torques may be

considered as outputs of the virtual actuating wheels.

In the case of three omniwheeled mechanism, so as our situation, since the controllers

do not control the omniwheels directly, instead control virtual wheels that exist in

the same plane as the sensors. A kinematic conversion is need to be done to find

corresponding torques of the omniwheels, which will be discussed later in Section 5.4.

5.3.1.1 Balancing Control: Acceleration Feedback Approach

In this work, the inner acceleration control approach detailed in [21] is implemented

as part of cascaded position, velocity and current control loops as depicted in Fig-

ure 5.6. The goal of acceleration control is to improve the stabilization performance

of the ballbot system by rejecting external disturbances. The position loop produces

reference signals for the velocity loop, which in turn creates reference signals for the

current loop. The success of stabilization control largely depends on reliable ac-

celeration feedback, noise-adjusted angular accelerations, provided by sensor fusion

algorithm, are used as feedback in the inner current control loops.

In control loops following notations are used to describe motion vectors, Θ =[
φ θ ψ

]T
represent Euler angles, Euler rates described by Ω =

[
φ̇ θ̇ ψ̇

]T
, and

Euler accelerations are denoted by Γ =
[
φ̈ θ̈ ψ̈

]T
. The block diagram of the AFB

58



controller is depicted in Figure 5.6, Θref is the reference attitude for balancing con-

troller. Additionally, τd is the unknown disturbance acting directly on body and Kγ

is the acceleration feedback gain.

Kinemat ic 
Conversion

Ball
botPID PI

e Ie 



ref




refI
1 K PI

K







e

Cascaded AFB

Î

bk

Master-Slave
Kalman Filter

IMU

Saturation

d

Figure 5.6: Block diagram of the balancing controller with cascaded AFB.

Higher acceleration gain, Kγ, adds more electronic inertia to the physical inertia of

the total system. Thus, the overall system exhibits high dynamic stiffness and has

better disturbance rejection. The increase in effective inertia reduces the speed of

the system’s response. In order to preserve the loop gain, one should scale up the

control loop gains by the factor (1 +Kγ) in (5.10).

The following PID controllers generate reference velocities for the velocity control

loops, for the orientation errors are defined as eΘ:

Ωref = KpΘ
eΘ +KiΘ

∫
eΘdt+KdΘ

ėΘ (5.9)

Velocity and current controls are designed as PI controllers and reference currents

are generated as follows, where eΩ represents the velocity errors in the Euler rates.

Iref = (1 +Kγ)KpΩ
eΩ + (1 +Kγ)KiΩ

∫
eΩdt (5.10)

Herewith, the balancing torque is calculated as

τkb = KpIeI +KiI

∫
eIdt (5.11)

59



where the acceleration feedback comes into picture and current error is defined as:

eI = Iref − Î (5.12)

Î = KγΓ (5.13)

5.3.1.2 Balancing Control: Conventional PD Control

In conventional PD controller [1, 41], a ballbot is controlled by two PD controllers,

that control the pitch and roll angles, where the problem of stabilization is reduced

to one regulation problem. For the orientation errors are defined as eΘ, the balancing

torque is calculated as:

τkb = KpΘ
eΘ +KdΘ

ėΘ (5.14)

The block diagram of the PD controller is depicted in Figure 5.7.

Kinemat ic 
Conversion

Ball
botPD

e


ref



PD Control

bk

AHRS IMU

Saturation

d

Figure 5.7: Block diagram of the balancing controller with conventional PD.

60



5.3.2 Position Control

In the proposed approach, the position controller is constructed according to the

absolute position of the ball in the inertial coordinates. Tracking control is mainly

focused on the controlling the position and velocity of the ball center. Since the

ball moves only horizontally in a pure rolling motion without slippage between the

ball and the ground, the horizontal positional dynamics of the ball in the inertial

coordinates can be written in terms of ball angular velocity as

v = rk

sψb
cψb

cψb
sψb

Ωk (5.15)

where Ωk =
[
φ̇k, θ̇k

]T
is angular velocity of the ball, rk is the radius of the ball, and

cθi and sθi represent cosine and sine of the θ in frame i, respectively. By taking time

derivative of both side and rearranging to find angular acceleration of the ball as

Γk =
[
φ̈k, θ̈k

]T
,

Γk =
1

rk

sψb
−cψb

cψb
sψb

 a−
0 c2

ψb
− s2

ψb

1 −2cψb
sψb

Ωkψ̇b (5.16)

Desired acceleration of the ballbot is constructed from the outputs of position con-

troller as in the typical motion control systems contain cascaded position and velocity

loops. The position loop produces reference signals for the velocity loop, which in

turn creates desired acceleration aref signal for the system defined in the inertial

frame. Position and velocity controls are designed as PID and PI respectively.

vref = Kppep +Kip

∫
epdt+Kdp ėp (5.17)

aref = Kpvev +Kiv

∫
evdt (5.18)

61



where ep and ev represent the position and velocity errors, respectively. Kp, Ki

and Kd are the proportional, integral and derivative control gains for corresponding

variables. Then, desired torques on the ball coming from tracking controller can

be calculated after doing the transformation detailed above and multiplying by the

inertias of the ball, Ik, as

τkp = IkΓk (5.19)

The main block diagram of the position controller with balancing controller is de-

picted in Figure 5.8.

PID PI

Balancing 
Controller

Kinemat ic 
Conversion

Space
Transformation

p
ref

pv
pe

ve
   pk

bk



refka

dPosition Controller

refkv

IM U
+

Encoders
Saturation

Figure 5.8: Block diagram of the position controller.

5.4 Torque Conversion

In this section a kinematic relation between the control torques of the virtual actu-

ating wheels and the torques of the real omniwheels is provided. This relation can

be derived using the conservation of the resulting torque on the body [1, 38]. Above

calculated torques are actuating the ball like a virtual wheel. The real system has

three motors. In order to be able to control the real system, the torques on the

virtual motors have to be converted into the torques for the real motors. A simple

mathematical relationship can be used to convert the signals from the virtual wheels

to the actual wheels using the angular configuration in Figure 5.3.

62



The command torques of virtual wheels, τki , derived from proposed linear controllers

were converted into the torques of the three real wheels, τi, as follows:

τ = τ =


τ1

τ2

τ3

 =


1
3

(
τk3 + (τk1 cos β − τk2 sin β) 2

cosα

)
−1

3

(
τk3 +

(
sin β(−

√
3τk1 + τk2)− cos β(τk1 +

√
3τk2)

)
1

cosα

)
1
3

(
τk3 +

(
sin β(

√
3τk1 + τk2) + cos β(−τk1 +

√
3τk2)

)
1

cosα

)


where α and β are the angles of the motor configuration which values given in

Table 5.1.

63



Chapter 6

Simulation and Experimental

Results

The following sections describe and discuss the verification of the derived fusion

and control algorithms using both simulations and experimental ballbot system.

Initially, in Section 6.1, the algorithms were programmed in Matlab/SimulinkTM for

simulation purpose. Subsequently, Section 6.2 deals with the implementation of

the filter equations with real IMU data and control algorithms on the experimental

ballbot system.

6.1 Simulation Results

A simulation model of the actual system is built in order to be able to rapidly

develop and tune the controllers and also test them without actually running the

experimental ballbot system, therefore avoiding the overhead associated with setting

up and calibrating the system and the test equipment each time. Matlab/SimulinkTM

is used for the simulation model, where the proposed fusion algorithm is incorporated

64



into a simulator, which includes sensor models, to test the stabilization performance

of the ballbot model.

6.1.1 Sensor Fusion Simulator

Accuracy of the designed algorithm highly depends on the sensor quality, especially

time-varying error characteristics. In order to be able to evaluate the filter, data from

inertial sensors were needed to construct a high fidelity simulation model, therefore

realistic sensor dynamics models given in Section 3.1 are utilized. Biases and noises

that corrupt sensor outputs are tabulated in Table 6.1 where SNR denotes signal to

noise ratio.

Table 6.1: Sensor simulator parameters.

Parameter Description Value

bg Gyro bias [1 − 1 0.5]T deg/s

ba Accelerometer bias [0.01 − 0.01 0.005]T g

bm Magnetometer bias [0.01 − 0.01 0.02]T µT

Sηg SNR of gyro 29.31 dB

Sηa SNR of accelerometer 25.45 dB

Sηm SNR of magnetometer 40 dB

Hereby, in this implementation, true Euler angles generated based on unbiased and

noise-free gyro data by using transformation matrix B (3.10) that transforms body

angular rates to Euler rates, then random noise and constant biases are included to

generate sensor measurements from the true data.

In Matlab environment, master and slave Kalman filters are modeled independently.

Both algorithms are compiled in the same recursive loop to work simultaneously.

Initial conditions for all states are selected as random number. After several imple-

mentations and configuration adjustments, results in Section 6.1.3 are obtained for

generated simulation data.

65



0

b

b

af

b

m

Velocity 
Transformation 

Matrix
dt

0
True Gyroscope

True 
Magnetometer

True 
Accelerometer

0

0

bf

0

b

gb

g



ab

a



mb

m

b

g

Figure 6.1: Block diagram of the IMU simulator.

Numerical values for noise processes have been determined iteratively, instead of

analyzing them empirically. The presented results of simulation in this thesis were

achieved by setting the system covariance matrices of the master-slave Kalman filter

as follows:

The process and the measurement covariance matrices of the slave filter are

Qs9×9 = diag
([

10−6 10−6 10−6 10−5 10−5 10−5 10−4 10−4 10−4

])
Rs3×3 = diag

([
10 10 10

])
The process and the measurement covariance matrices of the master filter are

Qm12×12 = diag
([

10−2 10−2 10−2 102 102 102 103 103 103 10−8 10−8 10−8

])
Rm9×9 = diag

([
0.962 0.962 0.962 0.687 0.1 0.1 0.1 0.003 0.003 0.003

])

Noise-free and unbiased gyro data selected as quadratic polynomial to satisfy slowly

varying damped sinusoidal angular jerk assumption. All data were generated at 1

kHz frequency for 40 seconds duration.

66



True angular motion values in body axes are generated using the bounded harmonic

wavelets as

Time [sec]
0 5 10 15 20 25 30 35 40

T
ru
e
B
o
d
y
R
a
te

ω
b 0
[d
eg
/
s]

-20

-10

0

10

20

30 ωb
0x

ωb
0y

ωb
0z

Figure 6.2: True angular velocity in body frame.

Time [sec]

T
ru
e
B
o
d
y
A
cc
.
α
b 0
[d
eg
/
s]

-6

-4

-2

0

2

4 α
b
0x

α
b
0y

α
b
0z

Figure 6.3: True angular acceleration in body frame.

Time [sec]
0 5 10 15 20 25 30 35 40

T
ru
e
B
o
d
y
J
er
k
γ
b 0
[d
eg
/
s]

-1.5

-1

-0.5

0

0.5

1

1.5 γ
b
0x

γ
b
0y

γ
b
0z

Figure 6.4: True angular jerk in body frame.

67



and, true Euler angles, rates and accelerations are formed by assuming initial posi-

tions as 0.

Time [sec]
0 5 10 15 20 25 30 35 40

T
ru
e
E
u
le
r
A
n
g
le
s
Θ

0
[d
e
g
]

-150

-100

-50

0

50

100

150 φ0

θ0
ψ0

Figure 6.5: True Euler angles in inertial frame.

Time [sec]
0 5 10 15 20 25 30 35 40

T
ru
e
E
u
le
r
R
a
te
s
Ω

0
[d
eg
/
s]

-40

-20

0

20

40 φ̇0

θ̇0

ψ̇0

Figure 6.6: True Euler rates in inertial frame.

Time [sec]
0 5 10 15 20 25 30 35 40T

ru
e
E
u
le
r
A
cc
.
Γ
0

[

d
eg
/
s2
]

-20

-10

0

10

20
φ̈0

θ̈0

ψ̈0

Figure 6.7: True Euler accelerations in inertial frame.

68



Hereby, aiding sensor measurements are generated from true Euler angles

Time [sec]
0 5 10 15 20 25 30 35 40

T
ru
e
L
in
ea
r
A
cc
.
f
b 0

[

m
/
s2
]

-5

0

5 f b
0x

f b
0y

f b
0z

Figure 6.8: True linear acceleration in body frame.

Time [sec]
0 5 10 15 20 25 30 35 40T

ru
e
M
a
g
n
et
ic

F
lu
x
H

b 0
[µ
T
]

-0.2

0

0.2

0.4

0.6

0.8

1
Hb

0x

Hb
0y

Hb
0z

Figure 6.9: True magnetic flux in body frame.

After obtaining clean measurement data, random noise and constant biases are in-

cluded to generate sensor measurements from the true data as follows.

Time [sec]
0 5 10 15 20 25 30 35 40

G
y
ro
sc
o
p
e
ω
b g
[d
eg
/
s]

-20

-10

0

10

20

30 ωb
gx

ωb
gy

ωb
gz

Figure 6.10: Generated gyroscope measurement by IMU simulator.

69



Time [sec]
0 5 10 15 20 25 30 35 40

A
cc
el
er
o
m
et
er

f
b a

[

m
/
s2
]

-10

-5

0

5
f b
ax

f b
ay

f b
az

Figure 6.11: Generated accelerometer measurement by IMU simulator.

Time [sec]
0 5 10 15 20 25 30 35 40

M
a
g
n
et
o
m
et
er

H
b m
[µ
T
]

0

0.5

1
Hb

mx

Hb
my

Hb
mz

Figure 6.12: Generated magnetometer measurement by IMU simulator.

6.1.2 Ballbot Simulator

Finally, calculations of the equations of motion, derived in Section 5.2.2 by solving

the Lagrange equation, are performed by a dynamic symbol manipulation software

package AutolevTM [45]. Because of the size of the equations of motion, we used

generated C code to build a MEX function based MATLAB function. In this way,

the execution speed of simulation process is increased. The speedup is around 25

times using the generated MEX over the baseline MATLAB function. To make sure

that calculated torques are in the range of the ballbot capability, the saturation

block is used to bound torque inputs to the system. It is important to note that,

the simulator does not include friction and/or backlash terms that are present in

real ballbots. The physical parameters of the ballbot for the simulation purpose are

70



presented in Table 5.1, where these parameters are calculated from a CAD software

model by considering appropriate sizing and material selection of our ballbot design.

The performance of the proposed sensor fusion algorithm is evaluated by using the

estimated Euler angles, velocities and accelerations as feedback signals in the stabi-

lization control of the ballbot simulator. For the PD and AFB controllers, controller

gains are tuned manually by considering convergence and stability properties of sys-

tem trajectories. Additionally, all integrations are realized as numerical integration

in forward Euler form.

6.1.3 Simulation: Sensor Fusion Results

For the slave Kalman filter, the bias compensated angular velocities are used as

measurement. As seen in Figure 6.13, estimated angular velocities were smoothed

and unbiased version of gyroscope readings.

B
o
d
y
R
at
e
ω
b x
[d
eg
/s
]

-20

0

20
ωb
gx

ω̂b
gx

B
o
d
y
R
at
e
ω
b y
[d
eg
/s
]

-20

-10

0

10

20 ωb
gy

ω̂b
gy

Time [sec]
0 5 10 15 20 25 30 35 40

B
o
d
y
R
at
e
ω
b z
[d
eg
/s
]

-10

0

10
ωb
gz

ω̂b
gz

Figure 6.13: Estimated angular velocity in the body coordinate system.

71



The slave filter has a high accuracy in body angular acceleration estimation. Esti-

mated body accelerations are compared with calculated true body angular acceler-

ation in Figure 6.14.

B
o
d
y
A
cc
.
α
b x

[

d
eg
/s

2
]

-5

0

5
α
b
0x

α̂
b
gx

B
o
d
y
A
cc
.
α
b y

[

d
eg
/s

2
]

-5

0

5
α
b
0y

α̂
b
gy

Time [sec]
0 5 10 15 20 25 30 35 40

B
o
d
y
A
cc
.
α
b z

[

d
eg
/s

2
]

-4

-2

0

2

4 α
b
0z

α̂
b
gz

Figure 6.14: Estimated angular acceleration the body coordinate system.

Table 6.2: RMS and maximum values of body angular acceleration estimation
errors after t = 5 sec.

Body Angular Acceleration RMS Error [deg/s2] Maximum Error [deg/s2]

αgx 0.105 0.285

αgy 0.102 0.237

αgz 0.132 0.243

Slave Kalman filter estimated angular acceleration in body frame which is consistent

with the true acceleration trajectory where the maximum and rms of the estimation

error shown in Table ??.

72



Also, estimated body jerks are compared with calculated true body angular jerks in

Figure 6.15. It can be seen from both estimated body angular jerks γ̂bg results that

the slave estimator provided a fast convergence rate with high accuracy.

B
o
d
y
J
er
k
γ
b x

[

d
eg
/s

3
]

-6

-4

-2

0

2
γ
b
0x

γ̂
b
gx

B
o
d
y
J
er
k
γ
b y

[

d
eg
/s

3
]

-6

-4

-2

0
γ
b
0y

γ̂
b
gy

Time [sec]
0 5 10 15 20 25 30 35 40

B
o
d
y
J
er
k
γ
b z

[

d
eg
/s

3
]

0

2

4

6

8
γ
b
0z

γ̂
b
gz

Figure 6.15: Estimated angular jerk the body coordinate system.

Table 6.3: RMS and maximum values of body angular jerk estimation errors
after t = 5 sec.

Body Angular Jerk RMS Error [deg/s3] Maximum Error [deg/s3]

γgx 0.157 0.507

γgy 0.146 0.345

γgz 0.141 0.361

Before going further, let us see how bad attitude results can be obtained from directly

gyroscope measurements. Body rate measurements are multiplied with transforma-

tion matrix B and integrated to show drifted results of direct integration of gyroscope

data. There are noticeable drifts in Euler angles as seen in Figure 6.16.

73



φ
[d
e
g
]

-100

0

100

200

300 φ0

φdrifted

θ
[d
e
g
]

-50

0

50 θ0
θdrifted

Time [sec]
0 5 10 15 20 25 30 35 40

ψ
[d
e
g
]

0

50

100
ψ0

ψdrifted

Figure 6.16: Comparison of drifted and true Euler angles.

It is clear that, without aiding sensors, integration of gyroscope measurement noise

brings seriously poor performance. Figure 6.16 frankly shows the importance of

sensor fusion for the accurate estimate of attitude.

The results of the simulations for the master estimator are provided in the following

figures. The master-slave Kalman filter has a high accuracy in Euler angles esti-

mation (see Figure 6.17). The roll and pitch attitude errors are approximately 0.04

degree. The yaw error is relatively bigger as 0.06 degree, which is a results of the

inaccuracy in measuring the magnetic vector.

Table 6.4: RMS and maximum values of Euler angles estimation errors.

Euler Angle RMS Error [deg] Maximum Error [deg]

Roll - φ 0.0462 0.817

Pitch - θ 0.0498 0.955

Yaw - ψ 0.0643 1.106

74



R
o
ll
φ
[d
e
g
]

-100

0

100
φ̂

φ0

P
it
ch

θ
[d
e
g
]

-60

-40

-20

0

20
θ̂

θ0

Time [sec]
0 5 10 15 20 25 30 35 40

Y
aw

ψ
[d
e
g
]

0

20

40

60

80
ψ̂

ψ0

Figure 6.17: Comparison of estimated and true Euler angles.

It is important to estimate gyroscope biases where they have a key role to compen-

sate slave estimator’s measurement and provide unbiased smoothed body rates (see

Figure 6.13). The implemented filter was successful enough to estimated constant

bias of gyroscope measurements. In Figure 6.18, the gyroscope biases are presented

and in Table ?? the rms and maximum values of the bias estimation error in the

time interval of 10-15 seconds are provided.

Table 6.5: RMS and maximum values of gyroscope bias estimation errors
between 10-15 sec.

Bias RMS Error [deg/s] Maximum Error [deg/s]

bgx 0.0396 0.0814

bgy 0.0354 0.0736

bgz 0.0391 0.0982

75



0 5 10 15 20 25 30 35 40

G
y
ro

B
ia
s
b g

[d
eg
/s
]

-40

-20

0

20

40

60 bgx
bgy
bgz
b̂gx
b̂gy
b̂gz

Time [sec]
10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

Z
o
o
m
ed

v
ie
w

-1

-0.5

0

0.5

1

Figure 6.18: Estimated gyroscope biases and zoomed views.

The performance of the proposed sensor fusion algorithm largely depends on how

good can it estimate Euler velocity and acceleration in the inertial frame. Since

those estimations will be used as feedback for stabilization control, they have to be

not only consistent but also smooth enough.

Estimated Euler rates are presented in Figure 6.19 and in Table ?? the rms and

maximum values of the Euler rate estimation error are provided.

Table 6.6: RMS and maximum values of Euler angular rates estimation errors
between 1-40 sec.

Euler Rate RMS Error [deg/s] Maximum Error [deg/s]

Roll Rate - φ̇ 0.389 3.572

Pitch Rate - θ̇ 0.414 3.198

Yaw Rate - ψ̇ 0.453 3.814

76



R
ol
l
R
at
e
φ̇
[d
eg
/s
]

-40

-20

0

20

40
φ̇0

ˆ̇
φ

P
it
ch

R
at
e
θ̇
[d
eg
/s
]

-20

-10

0

10

20 θ̇0
ˆ̇
θ

Time [sec]
0 5 10 15 20 25 30 35 40

Y
aw

R
at
e
ψ̇

[d
eg
/s
]

-20

0

20
ψ̇0

ˆ̇
ψ

Figure 6.19: Comparison of estimated and true Euler rates.

Lastly, as depicted in Figure 6.20 master-slave Kalman filter estimates Euler accel-

erations successfully. Table ?? shows the rms and maximum values of the Euler

acceleration estimation error.

Table 6.7: RMS and maximum values of Euler angular acceleration estimation
errors between 1-40 sec.

Euler Acceleration RMS Error [deg/s2] Maximum Error [deg/s2]

Roll Acceleration - φ̈ 0.463 4.092

Pitch Acceleration - θ̈ 0.381 2.84

Yaw Acceleration - ψ̈ 0.474 4.775

As it can be seen from Figure 6.19 and Figure 6.20, the accuracy of the developed

method is sufficient enough to use its outputs in control loops.

77



R
o
ll
A
cc
.
φ̈
[d
eg
/
s]

-10

0

10

20
φ̈0

ˆ̈
φ

P
it
ch

A
cc
.
θ̈
[d
eg
/
s]

-20

-10

0

10
θ̈0
ˆ̈
θ

Time [sec]
0 5 10 15 20 25 30 35 40

Y
aw

A
cc
.
ψ̈

[d
eg
/
s]

-10

0

10

20 ψ̈0

ˆ̈
ψ

Figure 6.20: Comparison of estimated and true Euler accelerations.

6.1.4 Simulation: Control Results

Simulation results for two different scenarios are presented in this section where the

proposed balancing and tracking controls are incorporated. In the first one, self-

balancing performance is investigated, while in the second simulation a horizontal

cartesian trajectory is tracked by the ballbot. All simulations are implemented in

Simulink. Furthermore, external disturbances are generated to illustrate realistic

effects of environmental factors in both scenarios.

6.1.4.1 Self-Balancing Results

In the first simulation, the body is initially tilted from its vertical position as setting

roll angle as φb = −20 deg. During the balancing, the ballbot is exposed to sudden

shocks on the body.

78



Disturbance acting on the ballbot is modeled as one point force like human touch.

In order to illustrate this case, disturbance torques are modeled as short duration

pulses with a magnitude of ±20 Nm that are applied on the system between 5 and

10 seconds as shown in Figure 6.21.

Time [sec]
0 1 2 3 4 5 6 7 8 9 10

D
is
tu
rb
a
n
ce

τ
d
[N

m
]

-20

-10

0

10

20

Figure 6.21: External disturbances applied on the body through roll axis.

Balancing performances of the both cascaded AFB control and PD control are shown

in Figures 6.22 and 6.23.

Time [sec]
0 1 2 3 4 5 6 7 8 9 10

R
ol
l
A
n
gl
e
φ
b
[d
e
g
]

-20

-15

-10

-5

0

5 Cascaded AFB
PD Control

Figure 6.22: Simulation results of the self-balancing: Body roll angle φb.

79



Table 6.8: Rise time and maximum deviation of body roll angle
for both controllers.

Controller Rise time [sec] Maximum Deviation [deg]

Cascaded AFB 0.678 0.35

PD 1.03 5.6

Body roll angle converged to zero from initially tilted position with fast transient

response for both controller but PD controller resulted was a bit slower. While the

rise time for cascaded AFB controller to 95% with respect to a given reference value

is 0.678 second, the rise time of PD controller is 1.03 second. When the acceleration

feedback is not used, body orientation can not be preserved due to sudden shocks

between 5 − 10 sec. The plots show that with AFB controller the ballbot has

successfully stayed upright when subjected to the push during balancing. Body

roll angle remained around zero with an maximum error 0.35 deg. However, PD

controller could not reject disturbances and cause the ballbot to incline through roll

and pitch axes, then it takes around 2 seconds to settle back to upright position.

The disturbance resulted in a maximum deviation from upright of approximately

5.6 deg for roll and 0.45 deg for pitch angles.

Time [sec]
0 1 2 3 4 5 6 7 8 9 10

P
it
ch

A
n
g
le

θ
b
[d
e
g
]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4 Cascaded AFB
PD Control

Figure 6.23: Simulation results of the self-balancing: Body pitch angle θb.

80



6.1.4.2 Trajectory Tracking Results

In the second simulation, the ballbot tracked a time-varying trajectory starting from

the origin of the inertial frame. During trajectory tracking, the ballbot has to per-

form self-balancing. In order to prevent rapid acceleration that makes the body to

attempt aggressively maneuvers toward the reference, desired trajectories are gener-

ated by using virtual time. In doing so, velocity and acceleration references can be

slowed down and smoothed trajectories are generated with zero initial velocities and

accelerations, where the maximum velocity is 0.1 m/s and maximum acceleration is

0.014 m/s2. With a well designed reference trajectory, the ballbot can accomplish a

given task more stable. In this scenario, initial conditions for all states are selected

as zero. During trajectory tracking, the ballbot is exposed to random generated

small external disturbances to show effectiveness of the proposed AFB controller.

Time [sec]
0 10 20 30 40 50 60 70 80 90 100

D
is
tu
rb
an

ce
τ
d
[N

m
]

-2

-1

0

1

2

3

Figure 6.24: External disturbances applied on the body through roll axis.

Tracking response on XY plane is presented in the following figure. The ballbot

tracked the reference trajectory in a much smoother way when the cascaded AFB

is used with the cascaded position controller. In other words, random external

disturbances that are given in Figure 6.24 are rejected. In contrast, PD controller is

failed to follow reference properly and resulted in a drift error almost up to 18 cm.

81



Rms of the drift error is found as 5 cm when PD control is used, for cascaded AFB

control it decreased about 80% to 1 cm.

X [m]
-0.5 0 0.5 1 1.5 2 2.5 3 3.5

Y
[m

]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Cascaded AFB
PD Control
Desired Trajectory

Figure 6.25: Simulation results of the tracking: 2D position.

Table 6.9: RMS and maximum values of positional drift errors for
both controllers.

Controller RMS Error [m] Maximum Drift [m]

Cascaded AFB 0.01 0.02

PD 0.05 0.18

6.2 Experimental Results

Experimental results have been considered as being the most important part of

this thesis. Therefore obtaining convincing results to be consistent with simulation

results is the most important outcome of this work. In order to investigate the

derived Kalman Filter equations and control algorithms on the designated real-time

software, they were coded in C language in Visual Studio environment.

82



6.2.1 Experimental: Sensor Fusion Results

As stated earlier, the MEMS inertial measurement unit being used in this study is

the IMU Brick 2.0 from TinkerForge Inc. Master-Slave Kalman filter is implemented

for 20 seconds duration by moving the IMU randomly. To check the performance the

proposed sensor fusion method, Euler angles provided directly by IMU’s embedded

system are also presented.

First of all, let us examine the inertial sensor readings are provided by IMU as follow:

Gyroscope measurements are obtained as follows:

G
y
ro
sc
op

e
ω
b g x

[d
eg
/s
]

-200

-100

0

100

200 ωb
gx

G
y
ro
sc
op

e
ω
b g y
[d
eg
/s
]

-200

-100

0

100

200 ωb
gy

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

G
y
ro
sc
op

e
ω
b g z
[d
eg
/s
]

-100

-50

0

50

100 ωb
gz

Figure 6.26: Gyroscope measurement by IMU.

83



Accelerometer measurements are obtained as shown in Figure 6.27.
A
cc
el
er
om

et
er

f
b a x

[

m
/s

2
]

-5

0

5
f b
ax

A
cc
el
er
om

et
er

f
b a y

[

m
/s

2
]

-5

0

5 f b
ay

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

A
cc
el
er
om

et
er

f
b a z

[

m
/s

2
]

4

6

8
f b
az

Figure 6.27: Accelerometer measurement by IMU.

And, magnetometer measurements are obtained as

M
ag
n
et
om

et
er

H
b m

x
[µ
T
]

-40

-20

0

20

40
Hb

mx

M
ag
n
et
om

et
er

H
b m

y
[µ
T
]

-20

0

20

40 Hb
my

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

M
ag
n
et
om

et
er

H
b m

z
[µ
T
]

-50

-40

-30

-20 Hb
mz

Figure 6.28: Magnetometer measurement by IMU.

84



Estimated body rates by slave Kalman filter are obtained as smoothed version of

gyro readings as shown in the following figure for x, y, and z axes respectively.

B
o
d
y
R
at
e
ω
b x
[d
eg
/s
]

-200

-100

0

100

200 ωb
gx

ω̂b
gx

B
o
d
y
R
at
e
ω
b y
[d
eg
/s
]

-200

0

200
ωb
gy

ω̂b
gy

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

B
o
d
y
R
at
e
ω
b z
[d
eg
/s
]

-100

-50

0

50

100 ωb
gz

ω̂b
gz

Figure 6.29: Estimated and measured angular velocity in the body coordinate
system.

Secondly, body accelerations are obtained as follows:

B
o
d
y
A
cc
.
E
st
.
α̂
b x

[

d
eg
/s

2
]

-1000

0

1000 α̂
b
x

B
o
d
y
A
cc
.
E
st
.
α̂
b y

[

d
eg
/s

2
]

-1000

0

1000
α̂
b
y

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

B
o
d
y
A
cc
.
E
st
.
α̂
b z

[

d
eg
/s

2
]

-500

0

500 α̂
b
z

Figure 6.30: Estimated angular acceleration in the body coordinate system.

85



And, body angular jerks are obtained as follows.
B
o
d
y
J
er
k
E
st
.
γ̂
b x

[

d
eg
/s

2
]

-2000

0

2000
γ̂
b
x

B
o
d
y
J
er
k
E
st
.
γ̂
b y

[

d
eg
/s

2
]

-2000

0

2000
γ̂
b
y

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

B
o
d
y
J
er
k
E
st
.
γ̂
b z

[

d
eg
/s

2
]

-1000

0

1000
γ̂
b
z

Figure 6.31: Estimated angular jerk in the body coordinate system.

In order to observe the drift problem, attitude results obtained by integration of the

real gyroscope measurements are shown in Figure 6.32. Even for this short duration,

integration of sensor errors cause a noticeable drift in Euler angles.

R
ol
l
φ
[d
e
g
]

0

100

200 φIMU

φdrifted

P
it
ch

θ
[d
e
g
]

-50

0

50
θIMU

θdrifted

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

Y
aw

ψ
[d
e
g
]

-50

0

50
ψIMU

ψdrifted

Figure 6.32: Comparison of drifted and measured Euler angles.

86



Experimental results for the master estimator are provided in the following figures.

The master Kalman filter has a high accuracy in Euler angles estimation, where the

estimated attitude angles are perfectly same as measured ones (see Figure 6.33).

If we assume the orientation angles that directly measured from IMU as reference

R
o
ll
φ
[d
e
g
]

-50

0

50
φ̂EKF

φIMU

P
it
ch

θ
[d
e
g
]

-50

0

50
θ̂EKF

θIMU

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

Y
aw

ψ
[d
e
g
]

-50

0

50 ψ̂EKF

ψIMU

Figure 6.33: Comparison of estimated and measured Euler angles.

angles, estimation errors were obtained as follows: The roll error is approximately

0.585 degree, the pitch error is 0.478 degree and for the yaw angle error is around

0.309, as detailed in Table ??.

Table 6.10: RMS and maximum values of Euler angles estimation errors.

Euler Angle RMS Error [deg] Maximum Error [deg]

Roll - φ 0.585 4.54

Pitch - θ 0.478 2.305

Yaw - ψ 0.309 2.678

87



In simulation data set, gyroscope measurement were created with constant bias

assumption (see Table 6.1), where the estimated biases in simulation results were

inherently almost constant as depicted in Figure 6.18. In contradistinction to simu-

lation results, the estimated gyroscope biases were considerably varying, in spite of

the fact that they were assumed to be constant. The implemented filter was success-

ful enough to estimated those biases of gyroscope measurements. In Figure 6.34, the

gyroscope biases are presented and in Table ?? the maximum, mean and variation

of estimated bias values are provided.

B
ia
s
b̂ g

x
[d
eg
/s
]

-2

0

2

4

6
b̄gx
b̂gx

B
ia
s
b̂ g

y
[d
eg
/s
]

0

2

4

6
b̄gy
b̂gy

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

B
ia
s
b̂ g

z
[d
eg
/s
]

-10

-5

0

5 b̄gz
b̂gz

Figure 6.34: Estimated gyroscope biases.

Table 6.11: Maximum, mean and variance of values of the estimated gyroscope
biases.

Bias Maximum Bias [deg/s] Mean [deg/s] Variance [deg/s]

bgx 6.20 -0.434 2.0

bgy 6.37 1.398 1.22

bgz 8.99 -1.531 4.17

88



Estimated Euler rates and accelerations are presented in Figure 6.35 and in Fig-

ure 6.36 respectively.

R
o
ll
R
a
te

φ̇
[d
eg
/
s]

-200

0

200 ˆ̇
φ

P
it
ch

R
a
te

θ̇
[d
eg
/
s]

-200

0

200
ˆ̇
θ

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

Y
aw

R
a
te

ψ̇
[d
eg
/
s]

-200

-100

0

100

200
ˆ̇
ψ

Figure 6.35: Estimated Euler rates from IMU measurements.

These results seem consistent because in this case it is not possible to compare the

estimated Euler rate and acceleration values with true values, since these values are

not known.

89



R
o
ll
A
cc
.
φ̈
[

d
eg
/
s2
]

-1000

0

1000 ˆ̈
φ

P
it
ch

A
cc
.
θ̈
[

d
eg
/
s2
]

-1000

0

1000

ˆ̈
θ

Time [sec]
0 2 4 6 8 10 12 14 16 18 20

Y
aw

A
cc
.
ψ̈

[

d
eg
/
s2
]

-1000

-500

0

500

1000
ˆ̈
ψ

Figure 6.36: Estimated Euler accelerations from IMU measurements.

6.2.2 Experimental: Control Results

In this section, we evaluate the performance of the presented sensor fusion and

control methods on real ballbot system, in particular of balancing performance.

Ballbot experiments in this thesis only focus on investigating the balancing perfor-

mances of PD and cascaded AFB controllers. In the performed experiments, the

body is initially tilted from its vertical position. After the settling down, the ballbot

is exposed to sudden shocks on the body as one point force human touch as short

duration pulses.

In order to compare the cascaded AFB control and PD control, same procedures were

followed from initial angle setting to applied disturbances. The applied distorting

effects are maintained at the same magnitude and duration as far as possible. For

the experiments, initial attitude is set as tilted towards roll angles approximately as

φb = −20 deg. This initial arrangement is done by real-time monitoring of the sensor

fusion outputs. After that, selected controller is activated manually by keyboard

90



input. Each experiment took 40 seconds and disturbance is exerted between 5-35

seconds.

Balancing performances of the both cascaded AFB control and PD control on real

ballbot system are shown in Figures 6.37 and 6.38.

Time [sec]
0 5 10 15 20 25 30 35 40

R
ol
l
A
n
gl
e
φ
b
[d
e
g
]

-20

-15

-10

-5

0

5 Cascaded AFB
PD Control

Figure 6.37: Experimental results of the self-balancing: Body roll angle φb.

Body roll angle converged to zero from initially tilted position with fast transient

response for both controller but PD controller resulted was a bit slower. While

the rise time (for 95% with respect to a given reference value) of cascaded AFB

controller is 0.36 second, the rise time of PD controller is 0.411 second. When the

acceleration feedback is not used, body orientation can not be preserved due to

sudden shocks between 5 − 35 seconds. The Figures 6.37 and 6.38 show that with

AFB controller the ballbot behaved more robust when subjected to the push during

balancing. Body roll angle remained around zero with an maximum error 2.188 deg.

However, PD controller failed to reject disturbances and cause the ballbot to incline

through roll and pitch axes. The disturbance resulted in a maximum deviation from

upright of approximately 8.563 deg for roll angle.

91



Table 6.12: Rise time and maximum deviation of the body roll angle φb
for both controllers.

Controller Rise time [sec] Rms (5-35 sec) [deg] Max. Deviation [deg]

Cascaded AFB 0.360 0.855 2.188

PD 0.411 3.487 8.563

It can also be observed that the body pitch angle also preserved much more stable

when the AFB is introduced as shown in Figure 6.38. RMS error in the θb is

significantly smaller when AFB is used. While the rms of the pitch angle is 0.586

deg for PD control, the AFB contributed to decrease it to 0.248 deg. Consequentially,

the maximum deviation is reduced from 1.625 deg to 0.487 deg.

Time [sec]
0 5 10 15 20 25 30 35 40

P
it
ch

A
n
gl
e
θ
b
[d
e
g
]

-1.5

-1

-0.5

0

0.5

1

1.5 Cascaded AFB
PD Control

Figure 6.38: Experimental results of the self-balancing: Body pitch angle θb.

Table 6.13: Rms and maximum of the body pitch angle
between 5-35 seconds for both controllers.

Controller Rms (5-35 sec) [deg] Maximum Deviation [deg]

Cascaded AFB 0.248 0.487

PD 0.586 1.625

92



Body Euler velocities are given in Figure 6.39. For the PD control case, rms values

of estimated roll and pitch velocities are 17.01 deg/s and 3.105 deg/s. When the

AFB is used, rms values of estimated roll and pitch velocities become 1.949 deg/s

and 0.396 deg/s as detailed in Table ??.

R
ol
l
R
at
e
φ̇
b
[d
eg
/s
]

-40

-20

0

20

40

60

80
Cascaded AFB
PD Control

Time [sec]
0 5 10 15 20 25 30 35 40

P
it
ch

R
at
e
θ̇
b
[d
eg
/s
]

-5

0

5

10

Figure 6.39: Experimental results of the self-balancing: Euler rates, φ̇b, θ̇b.

Table 6.14: Rms and maximum values of the body Euler rates
between 5-35 seconds for both controllers.

Controller Euler Rate [deg/s] Rms [deg/s] Maximum Rate [deg/s]

Cascaded AFB
Roll rate - φ̇b 1.949 10.147

Pitch rate - θ̇b 0.396 1.568

PD
Roll rate - φ̇b 17.01 53.479

Pitch rate - θ̇b 3.105 10.1472

93



Additionally, Figure 6.40 shows estimated Euler accelerations. When the AFB is

utilized in the cascaded control loop, rms values of the estimated acceleration sig-

nals are 11.89 deg/s2 and 2.50 deg/s2 respectively for roll and pitch axes. As the

acceleration feedback is not used, RMS values of the Euler accelerations increase to

165.64 deg/s2 and 27.44 deg/s2.

R
ol
l
A
cc
.
φ̈
b

[

d
eg
/s

2
]

-2000

-1000

0

1000

2000

3000

4000 Cascaded AFB
PD Control

Time [sec]
0 5 10 15 20 25 30 35 40

P
it
ch

A
cc
.
θ̈
b

[

d
eg
/s

2
]

-250

-200

-150

-100

-50

0

50

100

Figure 6.40: Experimental results of the self-balancing: Euler accelerations, φ̈b,
θ̈b.

Table 6.15: Rms and maximum values of the body Euler accelerations
between 5-35 seconds for both controllers.

Controller Euler Acc. [deg/s2] Rms [deg/s2] Maximum Acc. [deg/s2]

Cascaded AFB
Roll Acc. - φ̈b 11.89 81.29

Pitch Acc. - θ̈b 2.50 11.77

PD
Roll Acc. - φ̈b 165.64 2000

Pitch Acc. - θ̈b 27.44 280

94



Chapter 7

Conclusion and Future Works

In this thesis, a novel master-slave Kalman filter was proposed where an extended

Kalman filter (EKF) and a classical Kalman filter (KF) were integrated in a master-

slave configuration to estimate reliable angular motion signals by fusing measure-

ments of an inertial measurement unit (IMU). The proposed fusion method reliably

estimated not only Euler angles but also rates and accelerations in both simulations

and experimental ballbot system. The performance of proposed fusion algorithm

was evaluated by using the estimated angular motion signals as feedback in the con-

trol of a self-balancing and position of a single spherical wheeled mobile platform

driven by three omniwheels, i.e. ballbot. For this purpose, the design and construc-

tion of a ballbot platform with MEMS sensors and real-time control hardware were

conducted, followed by the analytical derivation of the ballbot dynamics by means

of Euler-Lagrange formulation. Balancing and position controllers that utilize ac-

celeration feedback (AFB) were then designed to achieve stabilization of the ballbot

and tracking of a desired trajectory.

Performance of the proposed sensor fusion method and the developed controllers

were assessed by using a high fidelity simulation platform. First, inertial sensor

measurements were generated and sensor fusion simulations were performed, then

95



performance of the proposed fusion method was examined by comparing estimated

values with true values. The master-slave Kalman filter accurately estimated angular

motion values with rms error for Euler angles around 0.05 deg, for Euler rates

0.4 deg/s, and for Euler accelerations as 0.5 deg/s2. Secondly, ballbot simulator

was used to compare cascaded AFB and PD controllers in two scenarios subject to

different external disturbances. Much better stabilization performance was achieved

in the both scenarios with acceleration feedback (AFB) controller. In the first one,

self-balancing results were quite satisfying where the maximum deviation of the body

orientation angles decreased by 95% in the presence of AFB. In the second scenario,

the desired trajectory was tracked in a much smoother way when the cascaded AFB

was used with the cascaded position controller where the rms of the drift error was

decreased about 80% to 1 cm.

Additionally, several experiments were conducted on the prototype ballbot system.

Initial experiments focused on the implementation of master-slave Kalman filter

with real sensor data and reasonable results were obtained. Developed fusion algo-

rithm was then incorporated into the implementation of the ballbot self-balancing

control under external disturbances where the ballbot exposed to forces exerted on

top of the upper plate. With the PD controller, the ballbot failed to preserve its

equilibrium and deviated up to 8.5 deg. The same scenario was repeated with the

developed controller that utilizes estimated acceleration feedback, and the results

showed better performances with the decrease of 75% of maximum deviation for roll

angle and 70% for pitch angle. Success of the cascaded AFB controller has also been

observed by Euler rate and acceleration responses against disturbances. Cascaded

AFB successfully accomplished disturbance rejection to prevent rapid acceleration

where the rms values of the estimated Euler rates and accelerations were reduced by

90%. However, in experiments, only balancing performance of the proposed control

method was investigated due to disruptions and deficiencies in the structure such as

excessive friction and neglected slippage.

96



Possible future works may include the experiments of robust position control of

the ballbot enhanced with AFB which can be done by utilizing additional external

feedback, e.g. vision or laser ranger measurements, and overcoming friction and

slippage problems. Moreover, the controllers and drivers can be mounted to the

main body to make the system fully mobile.

97



Appendix A

Jacobian Matrices for

Master-Slave Kalman Filter

This appendix includes the state transition and measurement matrices F and H of

the master estimator detailed in Section 3.3.1. Additionally, the state derivative and

measurement vectors in terms of the states is also provided.

%% In below expressions:

% phi: roll angles

% theta: pitch angle

% psi: yaw angle

% phid: roll rate

% thetad: pitch rate

% psid: yaw rate

% phidd: roll acceleration

% thetadd: pitch acceleration

% psidd: yaw acceleration

% gx: gyro rate around x axis

% gy: gyro rate around y axis

% gz: gyro rate around z axis

% wx: body rate slave estimator x axis

% wy: body rate slave estimator y axis

% wz: body rate slave estimator z axis

% wxd: body acceleration slave estimator x axis

% wyd: body acceleration slave estimator y axis

98



% wzd: body acceleration slave estimator z axis

% wxdd: body jerk slave estimator x axis

% wydd: body jerk slave estimator y axis

% wzdd: body jerk slave estimator z axis

% bx: bias x axis

% by: bias y axis

% bz: bias z axis

% 12x1 state vector

x(1) = phi;

x(2) = theta;

x(3) = psi;

x(4) = phid;

x(5) = thetad;

x(6) = psid;

x(7) = phidd;

x(8) = thetadd;

x(9) = psidd;

x(10) = bx;

x(11) = by;

x(12) = bz;

% State derivatives

xd(1) = gx - bx - cos(phi)*tan(theta )*(bz - gz) - sin(phi)*tan(theta )*(by - gy);

xd(2) = sin(phi )*(bz - gz) - cos(phi)*(by - gy);

xd(3) = - (sin(phi )*(by - gy))/cos(theta) - (cos(phi)*(bz - gz))/ cos(theta );

xd(4) = wxd + wy*( thetad*sin(phi)*( tan(theta )^2 + 1) + phid*cos(phi)*tan(theta))

+ wz*( thetad*cos(phi)*(tan(theta )^2 + 1) - phid*sin(phi)*tan(theta))

+ wzd*cos(phi)*tan(theta) + wyd*sin(phi)*tan(theta);

xd(5) = wyd*cos(phi) - wzd*sin(phi) - phid*wz*cos(phi) - phid*wy*sin(phi);

xd(6) = wy*(( phid*cos(phi ))/cos(theta) + (thetad*sin(phi)*sin(theta ))/cos(theta )^2)

- wz*(( phid*sin(phi))/ cos(theta) - (thetad*cos(phi)*sin(theta ))/cos(theta )^2)

+ (wzd*cos(phi))/ cos(theta) + (wyd*sin(phi ))/cos(theta);

xd(7) = wxdd + wy*(phid*( thetad*cos(phi)*(tan(theta )^2 + 1) - phid*sin(phi)*tan(theta ))

+ thetad *(phid*cos(phi )*(tan(theta )^2 + 1) + 2* thetad*sin(phi)*tan(theta )*

(tan(theta )^2 + 1)) + thetadd*sin(phi )*(tan(theta )^2 + 1) + phidd*cos(phi)*

tan(theta)) - wz*(phid*( thetad*sin(phi )*(tan(theta )^2 + 1) + phid*cos(phi)*

tan(theta)) + thetad *(phid*sin(phi)*( tan(theta )^2 + 1) - 2* thetad*cos(phi)*

tan(theta )*( tan(theta )^2 + 1)) - thetadd*cos(phi )*(tan(theta )^2 + 1) + phidd*

sin(phi)*tan(theta)) + wyd *(2* thetad*sin(phi)*( tan(theta )^2 + 1) + 2*phid*

cos(phi)*tan(theta)) + wzd *(2* thetad*cos(phi)*( tan(theta )^2 + 1) - 2*phid*

sin(phi)*tan(theta)) + wzdd*cos(phi)*tan(theta) + wydd*sin(phi)*tan(theta);

xd(8) = wydd*cos(phi) - wzdd*sin(phi) - wy*(cos(phi)*phid^2 + phidd*sin(phi))

99



+ wz*(sin(phi)*phid^2 - phidd*cos(phi)) - 2*phid*wzd*cos(phi)

- 2*phid*wyd*sin(phi);

xd(9) = wz*( thetad *(( thetad*cos(phi))/ cos(theta) + (2* thetad*cos(phi)*sin(theta )^2)

/cos(theta )^3 - (phid*sin(phi)*sin(theta ))/cos(theta )^2) - phid *(( phid*cos(phi))

/cos(theta) + (thetad*sin(phi)*sin(theta ))/cos(theta )^2) - (phidd*sin(phi))

/cos(theta) + (thetadd*cos(phi)*sin(theta ))/ cos(theta )^2) + wy*( thetad *(( thetad*

sin(phi ))/cos(theta) + (2* thetad*sin(phi)*sin(theta )^2)/ cos(theta )^3 +

(phid*cos(phi)*sin(theta ))/cos(theta )^2) - phid *(( phid*sin(phi))/cos(theta) -

(thetad*cos(phi)*sin(theta ))/ cos(theta )^2) + (phidd*cos(phi ))/cos(theta) +

(thetadd*sin(phi)*sin(theta ))/cos(theta )^2) + wyd *((2* phid*cos(phi))/cos(theta)

+ (2* thetad*sin(phi)*sin(theta ))/cos(theta )^2) - wzd *((2* phid*sin(phi))/ cos(theta)

- (2* thetad*cos(phi)*sin(theta ))/cos(theta )^2) + (wzdd*cos(phi))/ cos(theta)

+ (wydd*sin(phi))/ cos(theta );

xd(10) = 0;

xd(11) = 0;

xd(12) = 0;

% State transition matrix

F = zeros (12 ,12);

F(1,1) = sin(phi)*tan(theta )*(bz - gz) - cos(phi)*tan(theta )*(by - gy);

F(2,1) = cos(phi )*(bz - gz) + sin(phi)*(by - gy);

F(3,1) = (sin(phi )*(bz - gz))/cos(theta) - (cos(phi)*(by - gy))/ cos(theta );

F(4,1) = wy*( thetad*cos(phi)*( tan(theta )^2 + 1) - phid*sin(phi)*tan(theta))

- wz*( thetad*sin(phi)*(tan(theta )^2 + 1) + phid*cos(phi)*tan(theta ))

+ wyd*cos(phi)*tan(theta) - wzd*sin(phi)*tan(theta);

F(5,1) = phid*wz*sin(phi) - wyd*sin(phi) - phid*wy*cos(phi) - wzd*cos(phi);

F(6,1) = (wyd*cos(phi ))/cos(theta) - wz*(( phid*cos(phi))/cos(theta) + (thetad*

sin(phi)*sin(theta ))/ cos(theta )^2) - wy*(( phid*sin(phi))/cos(theta) -

(thetad*cos(phi)*sin(theta ))/ cos(theta )^2) - (wzd*sin(phi))/cos(theta);

F(7,1) = wyd *(2* thetad*cos(phi )*(tan(theta )^2 + 1) - 2*phid*sin(phi)*tan(theta))

- wz*(phid*( thetad*cos(phi )*(tan(theta )^2 + 1) - phid*sin(phi)*tan(theta))

+ thetad *(phid*cos(phi )*(tan(theta )^2 + 1) + 2* thetad*sin(phi)*tan(theta)

*(tan(theta )^2 + 1)) + thetadd*sin(phi)*( tan(theta )^2 + 1) + phidd*cos(phi)

*tan(theta )) - wy*(phid*( thetad*sin(phi)*(tan(theta )^2 + 1) + phid*cos(phi)

*tan(theta )) + thetad *(phid*sin(phi )*(tan(theta )^2 + 1) - 2* thetad*cos(phi)

*tan(theta )*(tan(theta )^2 + 1)) - thetadd*cos(phi)*(tan(theta )^2 + 1) +

phidd*sin(phi)*tan(theta)) - wzd *(2* thetad*sin(phi)*(tan(theta )^2 + 1) +

2*phid*cos(phi)*tan(theta)) + wydd*cos(phi)*tan(theta) - wzdd*sin(phi)*tan(theta);

F(8,1) = wy*(sin(phi)*phid^2 - phidd*cos(phi)) - wydd*sin(phi) - wzdd*cos(phi)

+ wz*(cos(phi)*phid^2 + phidd*sin(phi)) - 2*phid*wyd*cos(phi) + 2*phid*wzd*sin(phi);

F(9,1) = wy*( thetad *(( thetad*cos(phi))/ cos(theta) + (2* thetad*cos(phi)*sin(theta )^2)

/cos(theta )^3 - (phid*sin(phi)*sin(theta ))/cos(theta )^2) - phid *(( phid*cos(phi))

/cos(theta) + (thetad*sin(phi)*sin(theta ))/cos(theta )^2) - (phidd*sin(phi))/cos(theta)

100



+ (thetadd*cos(phi)*sin(theta ))/ cos(theta )^2) - wz*( thetad *(( thetad*sin(phi))

/cos(theta) + (2* thetad*sin(phi)*sin(theta )^2)/ cos(theta )^3 + (phid*cos(phi)*

sin(theta ))/ cos(theta )^2) - phid *(( phid*sin(phi ))/cos(theta) - (thetad*cos(phi)

*sin(theta ))/cos(theta )^2) + (phidd*cos(phi))/cos(theta) + (thetadd*sin(phi)

*sin(theta ))/cos(theta )^2) - wyd *((2* phid*sin(phi ))/cos(theta) - (2* thetad*

cos(phi)*sin(theta ))/ cos(theta )^2) - wzd *((2* phid*cos(phi))/cos(theta)

+ (2* thetad*sin(phi)*sin(theta ))/cos(theta )^2) + (wydd*cos(phi ))/cos(theta)

- (wzdd*sin(phi))/cos(theta);

F(1,2) = - cos(phi)*(bz - gz)*( tan(theta )^2 + 1) - sin(phi )*(by - gy)*(tan(theta )^2 + 1);

F(3,2) = - (cos(phi)*sin(theta )*(bz - gz))/cos(theta )^2 - (sin(phi)*sin(theta)*

(by - gy))/cos(theta )^2;

F(4,2) = wy*(phid*cos(phi )*(tan(theta )^2 + 1) + 2* thetad*sin(phi)*tan(theta)

*(tan(theta )^2 + 1)) - wz*(phid*sin(phi)*(tan(theta )^2 + 1) - 2* thetad*

cos(phi)*tan(theta )*( tan(theta )^2 + 1)) + wzd*cos(phi )*(tan(theta )^2 + 1)

+ wyd*sin(phi )*(tan(theta )^2 + 1);

F(6,2) = wz*(( thetad*cos(phi))/ cos(theta) + (2* thetad*cos(phi)*sin(theta )^2)/ cos(theta )^3

- (phid*sin(phi)*sin(theta ))/cos(theta )^2) + wy*(( thetad*sin(phi))/cos(theta)

+ (2* thetad*sin(phi)*sin(theta )^2)/ cos(theta )^3 + (phid*cos(phi)*sin(theta))

/cos(theta )^2) + (wzd*cos(phi)*sin(theta ))/cos(theta )^2 + (wyd*sin(phi)*

sin(theta ))/ cos(theta )^2;

F(7,2) = wz*( thetad *(2* thetad*cos(phi)*( tan(theta )^2 + 1)^2 - 2*phid*sin(phi)*

tan(theta )*( tan(theta )^2 + 1) + 4* thetad*cos(phi)*tan(theta )^2*( tan(theta )^2 + 1))

- phid*(phid*cos(phi)*(tan(theta )^2 + 1) + 2* thetad*sin(phi)*tan(theta )*(tan(theta )^2

+ 1)) - phidd*sin(phi)*( tan(theta )^2 + 1) + 2* thetadd*cos(phi)*tan(theta )*( tan(theta )^2

+ 1)) + wy*( thetad *(2* thetad*sin(phi)*( tan(theta )^2 + 1)^2 + 2*phid*cos(phi)*tan(theta)

*(tan(theta )^2 + 1) + 4* thetad*sin(phi)*tan(theta )^2*( tan(theta )^2 + 1)) - phid*(phid

*sin(phi)*(tan(theta )^2 + 1) - 2* thetad*cos(phi)*tan(theta )*( tan(theta )^2 + 1))+ phidd

*cos(phi)*(tan(theta )^2 + 1) + 2* thetadd*sin(phi)*tan(theta )*(tan(theta )^2 + 1))+ wyd

*(2* phid*cos(phi)*( tan(theta )^2 + 1) + 4* thetad*sin(phi)*tan(theta )*( tan(theta )^2 + 1))

- wzd *(2* phid*sin(phi )*(tan(theta )^2 + 1) - 4* thetad*cos(phi)*tan(theta )*(tan(theta )^2

+ 1)) + wzdd*cos(phi )*(tan(theta )^2 + 1) + wydd*sin(phi)*(tan(theta )^2 + 1);

F(9,2) = wzd *((2* thetad*cos(phi ))/cos(theta) + (4* thetad*cos(phi)*sin(theta )^2)/ cos(theta )^3

- (2* phid*sin(phi)*sin(theta ))/ cos(theta )^2) + wyd *((2* thetad*sin(phi ))/cos(theta) +

(4* thetad*sin(phi)*sin(theta )^2)/ cos(theta )^3 + (2* phid*cos(phi)*sin(theta ))

/cos(theta )^2)+ wy*(phid *(( thetad*cos(phi ))/cos(theta) + (2* thetad*cos(phi)*

sin(theta )^2)/ cos(theta )^3 - (phid*sin(phi)*sin(theta ))/ cos(theta )^2) + thetad

*(( phid*cos(phi))/cos(theta) + (2* phid*cos(phi)*sin(theta )^2)/ cos(theta )^3

+ (6* thetad*sin(phi)*sin(theta )^3)/ cos(theta )^4 + (5* thetad*sin(phi)*sin(theta))

/cos(theta )^2) + (thetadd*sin(phi)) /cos(theta) + (2* thetadd*sin(phi)*sin(theta )^2)

/cos(theta )^3 + (phidd*cos(phi)*sin(theta ))/ cos(theta )^2) - wz*(phid *(( thetad*

sin(phi ))/cos(theta) + (2* thetad*sin(phi)*sin(theta )^2)/ cos(theta )^3 +

(phid*cos(phi)*sin(theta ))/cos(theta )^2) + thetad *(( phid*sin(phi ))/cos(theta)

101



- (6* thetad*cos(phi)*sin(theta )^3)/ cos(theta )^4 + (2* phid*sin(phi)*sin(theta )^2)

/cos(theta )^3 - (5* thetad*cos(phi)*sin(theta ))/cos(theta )^2) - (thetadd*cos(phi))

/cos(theta) - (2* thetadd*cos(phi)*sin(theta )^2)/ cos(theta )^3 + (phidd*sin(phi)

*sin(theta ))/cos(theta )^2) + (wzdd*cos(phi)*sin(theta ))/cos(theta )^2

+ (wydd*sin(phi)*sin(theta ))/cos(theta )^2;

F(4,4) = wy*cos(phi)*tan(theta) - wz*sin(phi)*tan(theta );

F(5,4) = - wz*cos(phi) - wy*sin(phi);

F(6,4) = (wy*cos(phi))/cos(theta) - (wz*sin(phi))/cos(theta );

F(7,4) = wy*(2* thetad*cos(phi)*(tan(theta )^2 + 1) - 2*phid*sin(phi)*tan(theta))

- wz*(2* thetad*sin(phi )*(tan(theta )^2 + 1) + 2*phid*cos(phi)*tan(theta))

+ 2*wyd*cos(phi)*tan(theta) - 2*wzd*sin(phi)*tan(theta);

F(8,4) = 2*phid*wz*sin(phi) - 2*wyd*sin(phi) - 2*phid*wy*cos(phi) - 2*wzd*cos(phi);

F(9,4) = (2* wyd*cos(phi))/ cos(theta) - wz*((2* phid*cos(phi))/cos(theta) +

(2* thetad*sin(phi)*sin(theta ))/ cos(theta )^2) - wy*((2* phid*sin(phi ))/cos(theta)

- (2* thetad*cos(phi)*sin(theta ))/cos(theta )^2) - (2*wzd*sin(phi))/cos(theta);

F(4,5) = wz*cos(phi)*(tan(theta )^2 + 1) + wy*sin(phi )*(tan(theta )^2 + 1);

F(6,5) = (wz*cos(phi)*sin(theta ))/cos(theta )^2 + (wy*sin(phi)*sin(theta ))/ cos(theta )^2;

F(7,5) = wy*(2* phid*cos(phi)*( tan(theta )^2 + 1) + 4* thetad*sin(phi)*tan(theta )*( tan(theta )^2

+ 1)) - wz*(2* phid*sin(phi)*( tan(theta )^2 + 1) - 4* thetad*cos(phi)*tan(theta)*

(tan(theta )^2 + 1)) + 2*wzd*cos(phi)*(tan(theta )^2 + 1) + 2*wyd*sin(phi)

*(tan(theta )^2 + 1);

F(9,5) = wz*( thetad *(cos(phi)/cos(theta) + (2* cos(phi)*sin(theta )^2)/ cos(theta )^3)

+ (thetad*cos(phi))/cos(theta) + (2* thetad*cos(phi)*sin(theta )^2)/ cos(theta )^3

- (2* phid*sin(phi)*sin(theta ))/ cos(theta )^2) + wy*( thetad *(sin(phi)/cos(theta)

+ (2*sin(phi)*sin(theta )^2)/ cos(theta )^3) + (thetad*sin(phi))/ cos(theta)

+ (2* thetad*sin(phi)*sin(theta )^2)/ cos(theta )^3 + (2* phid*cos(phi)*sin(theta ))

/cos(theta )^2) + (2*wzd*cos(phi)*sin(theta ))/ cos(theta )^2 + (2*wyd*sin(phi)

*sin(theta ))/cos(theta )^2;

F(7,7) = wy*cos(phi)*tan(theta) - wz*sin(phi)*tan(theta );

F(8,7) = - wz*cos(phi) - wy*sin(phi);

F(9,7) = (wy*cos(phi))/cos(theta) - (wz*sin(phi))/cos(theta );

F(7,8) = wz*cos(phi)*(tan(theta )^2 + 1) + wy*sin(phi )*(tan(theta )^2 + 1);

F(9,8) = (wz*cos(phi)*sin(theta ))/cos(theta )^2 + (wy*sin(phi)*sin(theta ))/ cos(theta )^2;

F(1 ,10) = -1;

F(1 ,11) = -sin(phi)*tan(theta );

F(2 ,11) = -cos(phi);

F(3 ,11) = -sin(phi)/cos(theta );

F(1 ,12) = -cos(phi)*tan(theta );

F(2 ,12) = sin(phi);

F(3 ,12) = -cos(phi)/cos(theta );

% Measurement vector

y = zeros (10 ,1);

102



y(1) = g*sin(theta);

y(2) = -g*cos(theta)*sin(phi);

y(3) = -g*cos(phi)*cos(theta);

y(4) = psi;

y(5) = bx + phid - psid*sin(theta );

y(6) = by + thetad*cos(phi) + psid*cos(theta)*sin(phi);

y(7) = bz - thetad*sin(phi) + psid*cos(phi)*cos(theta);

y(8) = phidd - psidd*sin(theta) - psid*thetad*cos(theta);

y(9) = psid*(phid*cos(phi)*cos(theta) - thetad*sin(phi)*sin(theta)) + thetadd*

cos(phi) - phid*thetad*sin(phi) + psidd*cos(theta)*sin(phi);

y(10) = psidd*cos(phi)*cos(theta) - thetadd*sin(phi) - phid*thetad*cos(phi)

- psid*(phid*cos(theta)*sin(phi) + thetad*cos(phi)*sin(theta ));

% Measurement matrix

H = zeros (10 ,12);

H(2,1) = -g*cos(phi)*cos(theta );

H(3,1) = g*cos(theta )*sin(phi);

H(6,1) = psid*cos(phi)*cos(theta) - thetad*sin(phi);

H(7,1) = - thetad*cos(phi) - psid*cos(theta)*sin(phi);

H(9,1) = psidd*cos(phi)*cos(theta) - thetadd*sin(phi) - phid*thetad*cos(phi)

- psid*(phid*cos(theta)*sin(phi) + thetad*cos(phi)*sin(theta ));

H(10,1) = phid*thetad*sin(phi) - thetadd*cos(phi) - psid*(phid*cos(phi)*cos(theta)

- thetad*sin(phi)*sin(theta)) - psidd*cos(theta)*sin(phi);

H(1,2) = g*cos(theta );

H(2,2) = g*sin(phi)*sin(theta );

H(3,2) = g*cos(phi)*sin(theta );

H(5,2) = -psid*cos(theta);

H(6,2) = -psid*sin(phi)*sin(theta);

H(7,2) = -psid*cos(phi)*sin(theta);

H(8,2) = psid*thetad*sin(theta) - psidd*cos(theta);

H(9,2) = - psid*(phid*cos(phi)*sin(theta) + thetad*cos(theta)*sin(phi))

- psidd*sin(phi)*sin(theta );

H(10,2) = - psid*( thetad*cos(phi)*cos(theta) - phid*sin(phi)*sin(theta))

- psidd*cos(phi)*sin(theta );

H(4,3) = 1;

H(5,4) = 1;

H(9,4) = psid*cos(phi)*cos(theta) - thetad*sin(phi);

H(10,4) = - thetad*cos(phi) - psid*cos(theta )*sin(phi);

H(6,5) = cos(phi);

H(7,5) = -sin(phi);

H(8,5) = -psid*cos(theta);

H(9,5) = - phid*sin(phi) - psid*sin(phi)*sin(theta);

H(10,5) = - phid*cos(phi) - psid*cos(phi)*sin(theta);

103



H(5,6) = -sin(theta);

H(6,6) = cos(theta)*sin(phi);

H(7,6) = cos(phi)*cos(theta);

H(8,6) = -thetad*cos(theta);

H(9,6) = phid*cos(phi)*cos(theta) - thetad*sin(phi)*sin(theta);

H(10,6) = - phid*cos(theta)*sin(phi) - thetad*cos(phi)*sin(theta);

H(8,7) = 1;

H(9,8) = cos(phi);

H(10,8) = -sin(phi);

H(8,9) = -sin(theta);

H(9,9) = cos(theta)*sin(phi);

H(10,9) = cos(phi)*cos(theta);

H(5 ,10) = 1;

H(6 ,11) = 1;

H(7 ,12) = 1;

104



Appendix B

Ballbot Dynamics with AutoLev

This appendix includes the code used to generate the equations of motion for the

ballbot designed in Chapter 4, modeled in Chapter 5. Additionally, the code also

prints out and displays the equations in a suitable file format.

% Autolev Code for the BallBot with Lagrange method

% Date: August 2016

% Problem: Kinematics / Dynamics of the BallBot

%--------------------------------------------------------------------

% Default Settings

Digits 7 % Significant digits

AutoEpsilon 1.0E-14

AutoZ ON

%--------------------------------------------------------------------

% Newtonian(Inertial), bodies , frames , particles , points

Newtonian N % Newtonian reference frame

Bodies K, W{3}, A % Ball , wheels , body

% Point fixed in N, O center of N, PK ball -ground touching

% PW ball omniwhell touching , M intersection of Wi3 vectors

Points O, PK, PW{3}, M

Frames OW{3},L,Asub % Declares masless reference frames

%--------------------------------------------------------------------

% Variables , constants , and specified

% phi: angle of ball , theta: angle of body , q: motor angles

MotionVariables ’ x’’, y’’, phi{3}’’ , theta{3}’’, q{3}’’

105



Constants MA % Mass of body and omniwheels

Constants MK % Mass of ball

Constants MW % Mass of each omniwheel

Constants rK % Radius of the ball

Constants rW % Radius of the Omniwheel

Constants rA % Radius of the body

Constants l % Distance between center of the ball an center of the body

Constants g % Gravitational acceleration

Constants IK % Inertia of ball in the intertial reference frame I or L

Constants IAX % Inertia of body and omniwheels in the body reference frame A

Constants IAY % Inertia of body and omniwheels in the body reference frame A

Constants IAZ % Inertia of body and omniwheels in the body reference frame A

Constants IW % Inertia of each omniwheel and motor about the motor axis

Specified T{3} % Declares T as a func of time , constants and variables

Specified Td{3} % Disturbance force acting on the body

Constants a=pi *45/180 % Motor arrangement angle alpha

Constants b1=0, b2=2*pi/3, b3=4*pi/3 % Angle of the motors

%--------------------------------------------------------------------

% Mass and Inertias

Mass K=MK, W1=MW , W2=MW , W3=MW, A=MA

Inertia A,IAX , IAY , IAZ

Inertia K, IK , IK , IK

Inertia W1 , 0, 0, IW

Inertia W2 , 0, 0, IW

Inertia W3 , 0, 0, IW

%--------------------------------------------------------------------

% Geometry relating unit vectors

Simprot(N,K,1,0)

Simprot(N,L,3,theta3)

Simprot(L,Asub ,2,theta2)

Simprot(Asub ,A,1,theta1)

Simprot(A,W1 ,2,a+pi/2)

Simprot(W1,W1 ,2,b1)

Simprot(W1,W2,A3 >,b2)

Simprot(W1,W3,A3 >,b3)

%--------------------------------------------------------------------

% Position vectors

P_O_Ko > = x*N1> + y*N2> + rK*N3> % Position of the center of the ball

P_Ko_Ao > = l*A3> % Position of center of body wrt ball center

P_Ko_M > = (rW+rK)/cos(a)*A3 > % Position of motor intersection wrt ball center

106



P_M_W1o > = (rK+rW)*tan(a)*W13 > % Position of omniwheel center wrt M

P_M_W2o > = (rK+rW)*tan(a)*W23 >

P_M_W3o > = (rK+rW)*tan(a)*W33 >

P_Ko_PK > = -rK*N3 > % Position of the Ball -ground touching point

P_Ko_PW1 > = rK/(rK+rW)*P_Ko_W1o > % Vector from ball center to omniwheel touching points

P_Ko_PW2 > = rK/(rK+rW)*P_Ko_W2o >

P_Ko_PW3 > = rK/(rK+rW)*P_Ko_W3o >

%--------------------------------------------------------------------

% Angular velocities

Angvel(N,A) % Rotation frames ang vel declaration

Angvel(N,L)

Angvel(N,Asub)

W_K_L > = phi1 ’*L1 > + phi2 ’*L2 > % +phi3 ’*L3> Ball rotation on z axis is ignored

W_W1_A > = q1 ’*W13 >

W_W2_A > = q2 ’*W23 >

W_W3_A > = q3 ’*W33 >

q1d = dot(W_W1_A >, W13 >) % Motor speed with omniwheel

q2d = dot(W_W2_A >, W23 >)

q3d = dot(W_W3_A >, W33 >)

ALF_W1_A > = dt(W_W1_A >,W1)

ALF_W2_A > = dt(W_W2_A >,W2)

ALF_W3_A > = dt(W_W3_A >,W3)

q1dd = dot(ALF_W1_A >, W13 >) % Motor acceleration with omniwheel

q2dd = dot(ALF_W2_A >, W23 >)

q3dd = dot(ALF_W3_A >, W33 >)

wbx=dot(W_A_N >, A1 >) % body axes angular velocities

wby=dot(W_A_N >, A2 >)

wbz=dot(W_A_N >, A3 >)

ALF_A_N > = dt(W_A_N >,N)

abx=dot(ALF_A_N >, A1 >) % body axes angular acceleration

aby=dot(ALF_A_N >, A2 >)

abz=dot(ALF_A_N >, A3 >)

%--------------------------------------------------------------------

107



% Velocities

V_Ko_N > = dt( P_O_Ko >, N ) % Ball center inertial velocity

V_PK_N > = dt( P_O_PK >, N ) % Bal -ground touching point inertial velocity

V_PK_K > = dt( P_Ko_PK >, K)

V_W1o_N > = dt( P_O_W1o >, N ) % Wheel center inertial velocity

V_W2o_N > = dt( P_O_W2o >, N )

V_W3o_N > = dt( P_O_W3o >, N )

v2pts(N, A, Ko, Ao)

%--------------------------------------------------------------------

% Motion Constrains

Dependent [1]= dot(V_PK_N >-V_PK_K >,N1 >) % = 0

Dependent [2]= dot(V_PK_N >-V_PK_K >,N2 >) % = 0

ad1 >=A2 >

ad2 >=-sin(b2)*A1 > + cos(b2)*A2>

ad3 >=-sin(b3)*A1 > + cos(b3)*A2>

Dependent [3]= dot(cross(W_K_A >,P_Ko_PW1 >),ad1 >)- q1 ’*rW

Dependent [4]= dot(cross(W_K_A >,P_Ko_PW2 >),ad2 >)- q2 ’*rW

Dependent [5]= dot(cross(W_K_A >,P_Ko_PW3 >),ad3 >)- q3 ’*rW

Constrain(Dependent[x’,y’,q1’,q2’,q3 ’])

%--------------------------------------------------------------------

% Forces & Torques

Gravity( -g*N3> )

Torque(A/W1,T1*W13 >)

Torque(A/W2,T2*W23 >)

Torque(A/W3,T3*W33 >)

Torque_A > += Td1*A1 > + Td2*A2 > + Td3*A3>

%--------------------------------------------------------------------

% Energies

KE= KE()

PE= (dot(N3>,P_Ko_Ao >)*mA +

(dot(N3 >,P_Ko_W1o >)+dot(N3 >,P_Ko_W2o >)+dot(N3 >,P_Ko_W3o >))*mW)*g

Vir_W=dot(Torque_W1 >,W_W1_A >)+ dot(Torque_W2 >,W_W2_A >)

+dot(Torque_W3 >,W_W3_A >)+dot(Torque_A >,W_A_N >)

VirW_phi1=d(Vir_W ,phi1 ’)

VirW_phi2=d(Vir_W ,phi2 ’)

VirW_theta1=d(Vir_W ,theta1 ’)

VirW_theta2=d(Vir_W ,theta2 ’)

108



VirW_theta3=d(Vir_W ,theta3 ’)

%--------------------------------------------------------------------

% Equations of motion

Digits 3

Lag [1] = dt(d(KE,phi1 ’)) - d(KE , phi1) + d(PE ,phi1) - VirW_phi1

Lag [2] = dt(d(KE,phi2 ’)) - d(KE , phi2) + d(PE ,phi2) - VirW_phi2

Lag [3] = dt(d(KE,theta1 ’)) - d(KE, theta1) + d(PE ,theta1) - VirW_theta1

Lag [4] = dt(d(KE,theta2 ’)) - d(KE, theta2) + d(PE ,theta2) - VirW_theta2

Lag [5] = dt(d(KE,theta3 ’)) - d(KE, theta3) + d(PE ,theta3) - VirW_theta3

Lag := Evaluate(Lag , L=0.185090 , MA=2.39615 , MK=3, MW=0.25, g=9.81 ,&

rK =0.108225361302 , rW=0.05 , IK =0.019814 , IW =0.003329 ,&

IAX =0.10354 , IAY =0.10354 , IAZ =0.020929) % Real Values

Solve(Lag ,[phi1 ’’,phi2 ’’,theta1 ’’,theta2 ’’,theta3 ’’])

Encode phi1 ’’,phi2 ’’,theta1 ’’,theta2 ’’,theta3 ’’, wbx , wby , wbz ,&

abx , aby , abz , q1d , q2d , q3d , q1dd , q2dd , q3dd

CODE Algebraic () bb_Lagrange_RT.m % Save Resulting Code as m file

CODE Algebraic () bb_Lagrange_RT.c % Save Resulting Code as C Code

%********************************************************************

% LINEAR MODEL

%********************************************************************

% Linearization: Perturbation variables

Variables dphi{2}’’ % Perturbations of phi , phi ’, phi ’’

Variables dthe{3}’’ % Perturbations of theta , theta ’, theta ’’

Variables dT{3} % Perturbations of Torques

Imaginary i % Imaginary number

Perturb = Taylor(Lag , 1, phi1 =0:dphi1 ,phi2 =0:dphi2 ,&

phi1 ’=0: dphi1 ’,phi2 ’=0: dphi2 ’,&

phi1 ’’=0:dphi1 ’’,phi2 ’’=0:dphi2 ’’, &

theta1 =0:dthe1 ,theta2 =0:dthe2 ,theta3 =0:dthe3 , &

theta1 ’=0: dthe1 ’,theta2 ’=0: dthe2 ’,theta3 ’=0: dthe3 ’, &

theta1 ’’=0:dthe1 ’’,theta2 ’’=0:dthe2 ’’,theta3 ’’=0:dthe3 ’’, &

T1=0:dT1 , T2=0:dT2 ,T3=0:dT3)

Solve( Perturb , dphi1 ’’,dphi2 ’’, dthe1 ’’,dthe2 ’’,dthe3 ’’)

%--------------------------------------------------------------------

109



% Form matrix of peturbations and its time -derivative

% Matrix of perturbations

Xm = [dphi1 ,dphi2 ,dthe1 ,dthe2 ,dthe3 ,dphi1 ’,dphi2 ’,dthe1 ’,dthe2 ’,dthe3 ’]

% Time derivative of Xm

Xp = [dphi1 ’;dphi2 ’;dthe1 ’;dthe2 ’;dthe3 ’;dphi1 ’’;dphi2 ’’;dthe1 ’’;dthe2 ’’;dthe3 ’’]

Ut = [dT1 ,dT2 ,dT3]

%--------------------------------------------------------------------

% Form matrices A and B such that Xm’ = A * Xm + B * u

A = D(Xp, Xm)

B = D(Xp, Ut)

Encode A,B

Code Algebraic () ABmatrix_RT.m % Save A & B matrices

% End

110



Bibliography

[1] M. Kumagai and T. Ochiai, “Development of a robot balancing on a ball,” in

Control, Automation and Systems, 2008. ICCAS 2008. International Confer-

ence on, pp. 433–438, IEEE, 2008.

[2] L. Hertig, D. Schindler, M. Bloesch, C. D. Remy, and R. Siegwart, “Unified

state estimation for a ballbot,” in Robotics and Automation (ICRA), 2013 IEEE

International Conference on, pp. 2471–2476, IEEE, 2013.

[3] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear ap-

proaches. John Wiley & Sons, 2006.

[4] R. G. Brown and P. Y. Hwang, “Introduction to random signals and applied

kalman filtering: with matlab exercises and solutions,” Introduction to random

signals and applied Kalman filtering: with MATLAB exercises and solutions, by

Brown, Robert Grover.; Hwang, Patrick YC New York: Wiley, c1997., vol. 1,

1997.

[5] S. Sukkarieh, E. M. Nebot, and H. F. Durrant-Whyte, “A high integrity imu/gps

navigation loop for autonomous land vehicle applications,” IEEE Transactions

on Robotics and Automation, vol. 15, no. 3, pp. 572–578, 1999.

[6] J. Wendel, O. Meister, C. Schlaile, and G. F. Trommer, “An integrated

gps/mems-imu navigation system for an autonomous helicopter,” Aerospace

Science and Technology, vol. 10, no. 6, pp. 527–533, 2006.

111



[7] S. H. Jeong, S. Jung, and M. Tomizuka, “Attitude control of a quad-rotor sys-

tem using an acceleration-based disturbance observer: An empirical approach,”

in 2012 IEEE/ASME International Conference on Advanced Intelligent Mecha-

tronics (AIM), pp. 916–921, IEEE, 2012.

[8] G. Wahba, “A least squares estimate of satellite attitude,” SIAM review, vol. 7,

no. 3, pp. 409–409, 1965.

[9] F. L. Markley, “Attitude determination using vector observations and the sin-

gular value decomposition,” The Journal of the Astronautical Sciences, vol. 36,

no. 3, pp. 245–258, 1988.

[10] M. D. Shuster and S. Oh, “Three-axis attitude determination from vector obser-

vations,” Journal of Guidance, Control, and Dynamics, vol. 4, no. 1, pp. 70–77,

1981.

[11] J. L. Farrell, “Attitude determination by kalman filtering,” Automatica, vol. 6,

no. 3, pp. 419–430, 1970.

[12] F. L. Markley, “Attitude error representations for kalman filtering,” Journal of

guidance, control, and dynamics, vol. 26, no. 2, pp. 311–317, 2003.

[13] A. Kim and M. Golnaraghi, “A quaternion-based orientation estimation algo-

rithm using an inertial measurement unit,” in Position Location and Navigation

Symposium, 2004. PLANS 2004, pp. 268–272, IEEE, 2004.

[14] A. M. Sabatini, “Estimating three-dimensional orientation of human body parts

by inertial/magnetic sensing,” Sensors, vol. 11, no. 2, pp. 1489–1525, 2011.

[15] W. Li and J. Wang, “Effective adaptive kalman filter for mems-

imu/magnetometers integrated attitude and heading reference systems,” Jour-

nal of Navigation, vol. 66, no. 01, pp. 99–113, 2013.

112



[16] E. Edwan, S. Knedlik, and O. Loffeld, “Constrained angular motion estimation

in a gyro-free imu,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 47, no. 1, pp. 596–610, 2011.

[17] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of nonlinear attitude

estimation methods,” Journal of guidance, control, and dynamics, vol. 30, no. 1,

pp. 12–28, 2007.

[18] J. Stuelpnagel, “On the parametrization of the three-dimensional rotation

group,” SIAM review, vol. 6, no. 4, pp. 422–430, 1964.

[19] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation

vectors,” Matrix, vol. 58, no. 15-16, pp. 1–35, 2006.

[20] P. Petkov and T. Slavov, “Stochastic modeling of mems inertial sensors,” Cy-

bernetics and information technologies, vol. 10, no. 2, pp. 31–40, 2010.

[21] Y. Hori, “Disturbance suppression on an acceleration control type dc servo

system,” in Power Electronics Specialists Conference, 1988. PESC’88 Record.,

19th Annual IEEE, pp. 222–229, IEEE, 1988.

[22] P. B. Schmidt and R. D. Lorenz, “Design principles and implementation of ac-

celeration feedback to improve performance of dc drives,” Industry Applications,

IEEE Transactions on, vol. 28, no. 3, pp. 594–599, 1992.

[23] J. Han, Y. He, and W. Xu, “Angular acceleration estimation and feedback

control: An experimental investigation,” Mechatronics, vol. 17, no. 9, pp. 524–

532, 2007.

[24] J.-C. Lu and P.-C. Lin, “State derivation of a 12-axis gyroscope-free inertial

measurement unit,” Sensors, vol. 11, no. 3, pp. 3145–3162, 2011.

113



[25] J.-H. Chen, S.-C. Lee, and D. B. DeBra, “Gyroscope free strapdown inertial

measurement unit by six linear accelerometers,” Journal of Guidance, Control,

and Dynamics, vol. 17, no. 2, pp. 286–290, 1994.

[26] E. Edwan, S. Knedlik, and O. Loffeld, “Angular motion estimation using dy-

namic models in a gyro-free inertial measurement unit,” Sensors, vol. 12, no. 5,

pp. 5310–5327, 2012.

[27] T. Endo and Y. Nakamura, “An omnidirectional vehicle on a basketball,” in Ad-

vanced Robotics, 2005. ICAR’05. Proceedings., 12th International Conference

on, pp. 573–578, IEEE, 2005.

[28] L. Havasi, “Errosphere: an equilibrator robot,” in Control and Automation,

2005. ICCA’05. International Conference on, vol. 2, pp. 971–976, IEEE, 2005.

[29] T. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamically stable single-

wheeled mobile robot with inverse mouse-ball drive,” in Robotics and Automa-

tion, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on,

pp. 2884–2889, IEEE, 2006.

[30] U. Nagarajan, A. Mampetta, G. A. Kantor, and R. L. Hollis, “State transition,

balancing, station keeping, and yaw control for a dynamically stable single

spherical wheel mobile robot,” in Robotics and Automation, 2009. ICRA’09.

IEEE International Conference on, pp. 998–1003, IEEE, 2009.

[31] U. Nagarajan, B. Kim, and R. Hollis, “Planning in high-dimensional shape

space for a single-wheeled balancing mobile robot with arms,” in Robotics and

Automation (ICRA), 2012 IEEE International Conference on, pp. 130–135,

IEEE, 2012.

[32] U. Nagarajan, Fast and Graceful Balancing Mobile Robots. CARNEGIE MEL-

LON UNIVERSITY, 2012.

114



[33] J. Fong, S. Uppill, and B. Cazzolato, “899: Ballbot,” 2009.

[34] S. Doessegger, P. Fankhauser, C. Gwerder, J. Huessy, J. Kaeser, T. Kammer-

mann, L. Limacher, and M. Neunert, “Rezero,” Focus Project Report, Au-

tonomous Systems Lab., ETH Zurich, Switzerland, 2010.

[35] M. Kumagai, “Development of a ball drive unit using partially sliding rollersan

alternative mechanism for semi-omnidirectional motion,” in Intelligent Robots

and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 3352–

3357, IEEE, 2010.

[36] A. Bhatia, M. Kumagai, and R. Hollis, “Six-stator spherical induction motor

for balancing mobile robots,” in Robotics and Automation (ICRA), 2015 IEEE

International Conference on, pp. 226–231, IEEE, 2015.

[37] G. Seyfarth, A. Bhatia, O. Sassnick, M. Shomin, M. Kumagai, and R. Hollis,

“Initial results for a ballbot driven with a spherical induction motor,” in 2016

IEEE International Conference on Robotics and Automation (ICRA), pp. 3771–

3776, May 2016.

[38] S. Leutenegger and P. Fankhauser, “Modeling and control of a ballbot,” Bach-

elor thesis, ETH Zurich, 2010.

[39] A. N. Inal, Ö. Morgül, and U. Saranlı, “A 3d dynamic model of a spherical

wheeled self-balancing robot,” in Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on, pp. 5381–5386, IEEE, 2012.

[40] U. Nagarajan, G. Kantor, and R. L. Hollis, “Trajectory planning and control

of an underactuated dynamically stable single spherical wheeled mobile robot,”

in Robotics and Automation, 2009. ICRA’09. IEEE International Conference

on, pp. 3743–3748, IEEE, 2009.

115



[41] A. N. Inal, O. Morgul, and U. Saranli, “Path following with an underactuated

self-balancing spherical-wheel mobile robot,” in Advanced Robotics (ICAR),

2015 International Conference on, pp. 194–199, IEEE, 2015.

[42] R. A. Garcia-Garcia and M. Arias-Montiel, “Linear controllers for the nxt ball-

bot with parameter variations using linear matrix inequalities [lecture notes],”

IEEE Control Systems, vol. 36, no. 3, pp. 121–136, 2016.

[43] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications to

tracking and navigation: theory algorithms and software. John Wiley & Sons,

2004.

[44] R. P. Collinson, Introduction to avionics systems. Springer Science & Business

Media, 2013.

[45] T. R. Kane and D. A. Levinson, Solution Manual for Problem Sets for Dynamics

Online: Theory and Implementation with AUTOLEV. OnLine Dynamics, 2000.

116


	Abstract
	Özet
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Contributions of the Thesis
	1.3 Outline of The Thesis
	1.4 Publications

	2 Literature Survey and Background
	2.1 Sensor Fusion
	2.1.1 Kalman Filter
	2.1.2 Extended Kalman Filter

	2.2 Sensor Fusion for Attitude Estimation
	2.2.1 Representing Attitude
	2.2.1.1 Coordinate Systems

	2.2.2 Inertial Measurement Unit (IMU)
	2.2.2.1 Gyroscope
	2.2.2.2 Accelerometer
	2.2.2.3 Magnetometer


	2.3 Sensor Fusion and Control
	2.4 Construction of Inertial Angular Velocity and Acceleration
	2.5 Ballbots: Single Spherical Wheeled Mobile Platforms
	2.5.1 Design and Modeling
	2.5.2 Control Approaches


	3 Sensor Fusion Model
	3.1 Sensor Modeling
	3.1.1 Gyroscope Modeling
	3.1.2 Accelerometer Modeling
	3.1.3 Magnetometer Modeling

	3.2 EKF-based AHRS Using Euler Angles
	3.3 Master-Slave Kalman Filter
	3.3.1 Master Estimator
	3.3.2 Slave Estimator


	4 Design and Construction of a Ballbot
	4.1 Mechanical Design
	4.2 Component and Material Selection
	4.2.1 Ball Selection
	4.2.2 Drive Mechanism

	4.3 Construction of the Prototype Ballbot
	4.4 Data Acquisition Hardware and Drivers
	4.5 Sensors and Calibration
	4.5.1 Inertial Measurement Unit
	4.5.2 Calibration and Tuning

	4.6 Real-time Control and Monitoring Software

	5 Modeling and Control of the Ballbot
	5.1 Model Description
	5.1.1 Inputs and Outputs
	5.1.2 Assumptions
	5.1.3 Coordinates

	5.2 Dynamic Equations
	5.2.1 Energy Calculations
	5.2.2 Equation of Motion by Euler-Lagrange Derivation

	5.3 Control Schemes
	5.3.1 Balancing Control
	5.3.1.1 Balancing Control: Acceleration Feedback Approach
	5.3.1.2 Balancing Control: Conventional PD Control

	5.3.2 Position Control

	5.4 Torque Conversion

	6 Simulation and Experimental Results
	6.1 Simulation Results
	6.1.1 Sensor Fusion Simulator
	6.1.2 Ballbot Simulator
	6.1.3 Simulation: Sensor Fusion Results
	6.1.4 Simulation: Control Results
	6.1.4.1 Self-Balancing Results
	6.1.4.2 Trajectory Tracking Results


	6.2 Experimental Results
	6.2.1 Experimental: Sensor Fusion Results
	6.2.2 Experimental: Control Results


	7 Conclusion and Future Works
	A Jacobian Matrices for Master-Slave Kalman Filter
	B Ballbot Dynamics with AutoLev
	Bibliography

