title   
  

Haptic rendering of continuous parametric models

Ulusoy, Melda (2010) Haptic rendering of continuous parametric models. [Thesis]

[img]PDF - Registered users only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
6Mb

Official URL: http://192.168.1.20/record=b1305895 (Table of Contents)

Abstract

Haptic rendering is the process of computing restoring forces that are required to generate a perception of touch between a user and a virtual environment. The realism of haptic rendering depends mainly on haptic rendering algorithms and the modeling of virtual objects in a virtual environment. Friction and texture rendering also play an important role in increasing the realism of the experience between a user and a virtual environment. The state of the art haptic and friction rendering algorithms in the literature are developed for polygonal models. These approaches can not benefit from the advantages of continuous parametric surfaces such as compact representation, higher order continuity and exact computation of surface normals. In this thesis, a feedback-stabilized closest point tracking based haptic rendering algorithm is extended by introducing a direct friction rendering method for continuous parametric surfaces. Unlike the existing approaches, the proposed friction rendering method is direct and does not rely on the algorithms introduced for polyhedral surfaces. This algorithm implements the stiction model of friction for haptic rendering of parametric surfaces. It can directly operate on parametric models and can handle surfaces with high curvature. Furthermore, the algorithm allows transitions from sticking to sliding and sliding to sticking, as well as surface to surface transitions, without introducing discontinuous force artifacts. The algorithm also allows for tuning of the friction coefficient during the mode transitions to enable rendering of the Stribeck effect. Thanks to its feedback-stabilized core, it is robust against drift and numerical noise. The algorithm is computationally efficient (with respect to time and space); its applicability and effectiveness to simulate friction are verified through simulations and real-time implementations. In particular, the friction rendering algorithm is tested using pre-determined trajectories that demonstrate successful rendering of static friction at a corner, the mode changes from static-to-dynamic and dynamic-to-static friction.

Item Type:Thesis
Uncontrolled Keywords:Friction coefficient. -- Friction. -- Virtual reality. -- Feedback control. -- Haptic rendering. -- Friction rendering. -- Sürtünme katsayısı. -- Sürtünme. -- Sanal gerçeklik. -- Geri beslemeli kontrol. -- Haptik gerçekleşme. -- Sürtünme gerçekleşmesi.
Subjects:T Technology > TJ Mechanical engineering and machinery > TJ163.12 Mechatronics
ID Code:20246
Deposited By:IC-Cataloging
Deposited On:14 Nov 2012 14:05
Last Modified:14 Nov 2012 14:05

Repository Staff Only: item control page