
HAPTIC RENDERING OF

CONTINUOUS PARAMETRIC MODELS

by

MELDA ULUSOY

Submitted to the Graduate School of Engineering and Natural

Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Spring 2010

HAPTIC RENDERING OF

CONTINUOUS PARAMETRIC MODELS

APPROVED BY

Assist. Prof. Dr. Volkan PATOĞLU ..

(Thesis Supervisor)

Assoc. Prof. Dr. Kemalettin ERBATUR ..

Assist. Prof. Dr. Esra ERDEM ..

Assist. Prof. Dr. Ahmet ONAT ..

Assist. Prof. Dr. Gözde ÜNAL ..

DATE OF APPROVAL: ..

c©Melda Ulusoy 2010

All Rights Reserved

To my family...

Acknowledgments

First of all I would like to thank my thesis advisor Assist. Prof. Dr.

Volkan Patoğlu for his abundant help, guidance and assistance in numerous

ways. I would also like to express my appreciation to Assoc. Prof. Dr.

Kemalettin Erbatur, Assist. Prof. Dr. Ahmet Onat, Assist. Prof. Dr. Esra

Erdem and Assist. Prof. Dr. Gözde Ünal for spending time on my thesis

and for their guidance.

I am grateful to all my friends at Sabancı University Mechatronics Lab.

Special thanks to Ayşe Neşe Tüfekçiler, Ahmetcan Erdoğan, Ozan Tokatlı,

Elif Hocaoğlu, Aykut Cihan Satıcı and İsmail Hakan Ertaş for their love and

enjoyable conversations during the long hours in the lab.

Finally my most special thanks go to my best partner and friend, my

husband, Alphan Ulusoy. This work would not have happened without his

love and support.

This thesis was financially supported by scholarships from Sabancı Uni-

versity and the Scientific and Technological Research Council of Turkey,

TÜBİTAK.

v

HAPTIC RENDERING OF CONTINUOUS PARAMETRIC MODELS

Abstract

Haptic rendering is the process of computing restoring forces that are required

to generate a perception of touch between a user and a virtual environment.

The realism of haptic rendering depends mainly on haptic rendering algo-

rithms and the modeling of virtual objects in a virtual environment. Friction

and texture rendering also play an important role in increasing the realism of

the experience between a user and a virtual environment. The state of the art

haptic and friction rendering algorithms in the literature are developed for

polygonal models. These approaches can not benefit from the advantages of

continuous parametric surfaces such as compact representation, higher order

continuity and exact computation of surface normals.

In this thesis, a feedback-stabilized closest point tracking based haptic

rendering algorithm is extended by introducing a direct friction rendering

method for continuous parametric surfaces. Unlike the existing approaches,

the proposed friction rendering method is direct and does not rely on the

algorithms introduced for polyhedral surfaces. This algorithm implements

the stiction model of friction for haptic rendering of parametric surfaces. It

can directly operate on parametric models and can handle surfaces with high

curvature. Furthermore, the algorithm allows transitions from sticking to

sliding and sliding to sticking, as well as surface to surface transitions, with-

out introducing discontinuous force artifacts. The algorithm also allows for

tuning of the friction coefficient during the mode transitions to enable render-

ing of the Stribeck effect. Thanks to its feedback-stabilized core, it is robust

against drift and numerical noise. The algorithm is computationally efficient

(with respect to time and space); its applicability and effectiveness to simu-

late friction are verified through simulations and real-time implementations.

In particular, the friction rendering algorithm is tested using pre-determined

trajectories that demonstrate successful rendering of static friction at a cor-

ner, the mode changes from static-to-dynamic and dynamic-to-static friction.

vii

Özet

Haptik gerçekleme kullanıcının sanal ortamla etkileşimindeki dokunma

hissinin kullanıcıya aktarılabilmesi için gereken kuvvetlerin hesaplanması iş-

lemidir. Haptik gerçeklemenin gerçeğe yakn algılanabilmesi yüksek oranda

haptik gerçekleme algoritmalarına ve sanal ortamda yaratılan sanal nes-

nelerin modellenme yöntemine bağlıdır. Sürtünme ve doku gerçeklemesi de

kullanıcıyla sanal ortam arasındaki deneyimin gerçeğe yakınlığını arttırmada

önemli rol oynar. Literatürdeki haptik ve sürtünme gerçekleme algorit-

malarının çoğu çok yüzeyli modeller için geliştirilmiştir. Bu algoritmalar

sürekli parametrik yüzeylerin, kısa gösterim, yüksek derecede süreklilik ve

yüzey normallerinin hatasız hesaplanması gibi avantajlarından faydalanama-

zlar.

Bu tezde sürekli parametrik modeller üzerinde doğrudan çalışabilen bir

sürtünme gerçekleme algoritması önerilerek geri besleme kararlılaştırmalı en

yakın nokta takibine dayalı haptik gerçekleme algoritması geliştirilmiştir.

Varolan diğer yaklaşımlardan farklı olarak önerilen sürtünme gerçekleme

metodu çok düzlemli yüzeyler için geliştirilen algoritmalara dayanmamak-

tadır. Bu algoritma sürekli parametrik modellerin kullanıldığı haptik ger-

çeklemede kayma yuvarlanma sürtünmesini gerçeklemektedir. Yüksek eğimli

yüzeyler de dahil olmak üzere parametrik modeller üzerinde doğrudan çalışa-

bilir. Bunların dışında algoritma statik sürtünmeden dinamik sürtünmeye ve

dinamik sürtünmeden statik sürtünmeye geçişe kuvvet sürekliliğini garanti

altında tutarak izin vermektedir. Ayrıca sürtünme katsayının ayarlanmasına

izin vererek Stribeck efektini gerçeklemektedir. Geri beslemeli kararlılaştırma

alt yapısı sayesinde sapmaya ve nümerik gürültüye karşı gürbüzdür. Önerilen

algoritma işlemsel olarak verimlidir, sürtünmeyi uygulayabilmesi ve yeterliliği

benzetimlerle ve gerçek zamanlı gerçekleme ile gösterilmiştir. Statikten di-

namiğe, dinamikten statik sürtünmeye geçişleri ve köşede statik sürtünmeyi

sağlayacak önceden belirlenmiş referanslar sürtünme algoritması üstünde test

edilmiştir.

ix

Table of Contents

Acknowledgments v

Abstract vi

Özet viii

1 Introduction 1
1.1 Haptic Rendering . 1
1.2 Haptic Rendering Techniques 5
1.3 Collision Detection Algorithms 7
1.4 Friction Rendering . 8

1.4.1 Friction Models . 9
1.4.2 Approaches to Friction Rendering 13

1.5 Structure of the Thesis . 15
1.6 Contributions . 15

2 Haptic Rendering 17
2.1 Haptic Rendering of Parametric Surfaces 17

2.1.1 Modeling of Parametric Curves and Surfaces 18
2.1.2 Feedback-Stabilized Closest Point Tracking Algorithm

for Convex Parametric Surfaces 20
2.1.3 Comparison of the Haptic Rendering Algorithm to a

Newton-Rhapson based Approach 24
2.1.4 Boundary Handling using Voronoi Diagrams 25
2.1.5 Simulation Results of Haptic Rendering 26
2.1.6 Real-Time Implementation of Haptic Rendering 30

x

3 Friction Rendering 32
3.1 Friction Rendering Algorithm 32

3.1.1 Stick Slip Friction and Stribeck Effect 33
3.1.2 Static Friction at a Corner 41

3.2 Simulation Results . 42
3.2.1 Friction Rendering in 2-D 42
3.2.2 Friction Rendering in 3-D 49

3.3 Real-time Implementation Results 52
3.4 Results . 52

4 Conclusions and Future Work 54
4.1 Conclusions . 54
4.2 Future Work . 55
4.3 Human Subject Experiments 55
4.4 Deformation Modeling using Dynamic NURBS 57

4.4.1 Formulation of Dynamic NURBS 58
4.4.2 Simulation Results . 61

xi

List of Figures

1.1.1 Representation of a haptic rendering system. The top figure

depicts the real physical interaction between the human op-

erator and the haptic interface whereas the figure below cor-

responds the computer-simulated virtual environment of the

same haptic rendering system [1]. 4

1.4.1 Friction Models. (a) Coulomb friction model (b) Coulomb

friction in presence of viscous friction (c) Stiction model (d)

Stribeck effect . 10

1.4.2 Karnopp friction model . 11

2.1.1 Feedback-stabilized closest point tracking algorithm 21

2.1.2 Typical trajectories during closest point tracking of (a) the

feedback-stabilized algorithm (b) the methods based on inter-

mediate representation . 25

2.1.3 Boundary handling using Voronoi regions [1] 26

2.1.4 Internal and external Voronoi regions of a virtual object . . . 27

2.1.5 State flow of Voronoi regions of the virtual object seen in 2.1.4.

The corresponding Voronoi regions are shown with same let-

ters as in Figure 2.1.4 . 28

2.1.6 Force response graph of a haptic rendering system 29

xii

2.1.7 Measured force in real-time 30

2.1.8 The left hand side of the figure represents the virtual object

that the user interacts with and the computed forces are shown

in the right hand side of the figure. 31

3.1.1 a) Stiction model of friction, b) Stiction model of friction with

Stribeck effect . 33

3.1.2 Finite state machine of the friction rendering algorithm 34

3.1.3 Schematic representations demonstrating critical stages of the

friction rendering algorithm 36

3.1.4 Static friction at a corner . 42

3.2.1 Snapshots depicting the location of HIP and GO during the

simulation, in which HIP tracks a pre-determined path. . . . 44

3.2.2 Plots representing the frictional and normal forces calculated

during the simulation . 46

3.2.3 Simulation of the Stribeck effect through the modulation of

the coefficient of friction during transition from stuck to slip

mode based on the velocity of GO 47

3.2.4 Changes in the positions of GO and CP while executing the

pre-determined path . 48

3.2.5 HIP and GO positions are represented before and after a col-

lision with the NURBS surface 49

3.2.6 Trajectory of HIP on the NURBS surface. HIP is allowed to

move along the parameter v and its motion along the param-

eter u is kept still. 50

3.2.7 Plots representing the frictional and normal forces calculated

during the friction rendering of a NURBS surface 51

xiii

3.3.1 Real-time implementation of the friction rendering algorithm

demonstrating an occurrence of the stuck to slip transition . . 53

4.3.1 a) b) Virtual object formed by convex curves c) Virtual object

formed by straight lines d) Virtual object generated by con-

cave curves e) The parametric models in a), b), c) and d) are

represented on top of each other 56

4.4.1 Deformation of a B-Spline under force application. The dashed

B-Splines represent the deformed objects. The B-Splines are

parameterized between u = 0 and u = 1. The force is applied

to the B-Splines at u = 0.5, u = 0, u = 0 and u = 1, respectively. 62

xiv

List of Tables

xv

Chapter 1

Introduction

This chapter presents literature review on haptic rendering techniques, colli-

sion detection methods used in haptic rendering, friction models and friction

rendering approaches.

1.1 Haptic Rendering

Recent advances in virtual reality (VR) have rendered realistic interactions

with virtual environments possible through various senses of humans such as

hearing, sight and touch. Haptic, (Greek for touch), interfaces are typical in

VR applications due to their capability to transmit physical interactions in a

virtual environment to the user through the sense of touch. In the past decade

haptics has been broadly used in novel applications such as surgical training,

virtual prototyping, molecular docking, telerobotics and teleoperation. These

novel applications and enormous interest in the field of haptics point out the

significance of haptics in realistic perception of virtual environments by the

user.

Haptic Rendering is the process of computing forces arising from the in-

1

teraction between a user and a virtual environment. These forces are fed back

to the user by means of a haptic interface so that a mechanical interaction

with computationally mediated environments is possible. When compared to

visual and audio rendering, haptic rendering has demanding computational

requirements. While visual rendering of virtual environments can be carried

out at 30-60 Hz, to maintain stability while representing smooth and real-

istic contact forces, haptic rendering requires haptic update rates of 1kHz

or higher[2]. Otherwise, the haptic system can become unstable and force

discontinuities may occur.

Haptic rendering algorithms have been developed to render force feed-

back correctly to the human operator. The structure of a haptic rendering

algorithm mainly consists of collision detection and force-response. Colli-

sion detection is needed to detect collisions between the human operator

and virtual objects. If a collision is detected, force-response algorithm takes

care of computing the interaction force between human operators and virtual

objects.

The components of a haptic rendering system can be classified as a hap-

tic interface and a computer-simulated virtual environment. Haptic interface

and virtual environment are linked by means of a haptic rendering algorithm.

The top portion of Figure 1.1.1 depicts the real physical interaction between

a human operator and a haptic interface. The human operator interacts with

the end-effector of the haptic interface through the finger-tip. The bottom

portion of Figure 1.1.1 represents the computer-simulated virtual environ-

ment of the same haptic rendering system in which the point E corresponding

to the end-effector of the haptic interface is connected to a proxy P through

a virtual coupler. A and B are virtual objects that the proxy P can interact

2

with.

Virtual coupling is introduced in [3] and extended in [4]. It consists of

a virtual spring and a virtual damper connected in parallel, and links the

haptic display with the virtual environment. The use of a virtual coupler

guarantees the stability of the haptic display by eliminating the energy in-

troduced to the system due to numerical calculation. The main idea behind

the virtual coupling is that the virtual coupler extracts more energy from

the system than the energy introduced by the haptic rendering algorithm

and this makes the coupled rendering algorithm and haptic coupler system

passive. Common experience suggests that humans remain passive when in-

teracting with passive systems such as dampers, masses [5]. Therefore, the

human operator is considered as a passive impedance. Since the haptic dis-

play itself is passive, the passivity of overall system can then be guaranteed if

the haptic rendering algorithm and the virtual coupler can be made passive.

Finally, under mild observability assumption passivity implies stability.

The problem in maintaining the passivity of a haptic display arises due

to the sampled-data effects of the haptic display. A necessary and sufficient

condition for the passivity of a haptic rendering system is

b >
KT

2
+ |B| (1.1)

where b represents the physical damping present in the mechanism, T is the

sampling rate, K the virtual stiffness, and B the virtual damping coeffi-

cient [6]. The energy leak due to the errors introduced by the sampled-data

system should be dissipated by the physical damping present in the mecha-

nism or by the artificial damping introduced by the controller.

3

Figure 1.1.1: Representation of a haptic rendering system. The top figure

depicts the real physical interaction between the human operator and the

haptic interface whereas the figure below corresponds the computer-simulated

virtual environment of the same haptic rendering system [1].

4

1.2 Haptic Rendering Techniques

Haptic rendering techniques are highly dependent of the underlying repre-

sentation of the geometric models used to form the virtual environment. The

approaches based on volumetric representations define vector fields inside the

virtual objects that correspond to the restoring forces used for rendering [7].

The approaches that depend on surface representations are commonly devel-

oped for a single-point interaction, where the user interacts with the virtual

environment through the point end-effector of a haptic device. In these

approaches, the restoring force is calculated proportional to the amount of

penetration of the haptic interaction point (HIP), the virtual image of the

end effector point, into the surface of the virtual object. To calculate the rel-

evant penetration depth and corresponding direction of the restoring force,

a point on the surface that is (locally) closest to the HIP, called the closest

point (CP), needs to be calculated. Hence, the closest point algorithms used

to calculate the CP constitute a crucial element of the haptic rendering.

Surface representations are commonly defined using either polyhedral or

parametric models. For polyhedral models, haptic rendering algorithms uti-

lize the state of the art algorithms [8–10] for computing the distance between

convex polyhedra to detect collisions and to locate the interaction surface.

During haptic rendering, only the (local) closest point to HIP on the relevant

interaction surface is of interest. A god-object (GO) is defined as a convenient

means of locating the relevant CP [11]. GO is a point that is constrained to

move on the interaction surface. As HIP moves, GO tracks it on the inter-

action surface. When the interaction surface changes, GO transitions to the

new interaction surface by tracking HIP in a continuous manner. In addition

to a closest point tracking algorithm, the polyhedral models necessitate use

5

of further algorithms to render refined, realistic virtual worlds. Since sharp

corners inherent polyhedral models cause force discontinuities during edge

crossings, smoothing techniques, such as force shading, need to be utilized to

render the feel of smooth surfaces [11, 12]. In addition, since the numerical

tolerances can cause GO to fall through the cracks during interaction surface

transitions, finite-sized GOs are suggested for use with polyhedral surface

representations [13].

Parametric surface models are inherently smooth; therefore, such repre-

sentations are natural candidates for haptic rendering of smooth and highly

curved objects. Moreover, parametric models possess compact representa-

tion and offer efficient means to calculate surface normals at the point of

interaction [14]. Most of the haptic rendering algorithms proposed in the

literature address the parametric representations using indirect approaches.

The most common approach is to use (adaptively refined) meshes to convert

the problem into a polyhedral one. Other indirect approaches use interme-

diate tangent representations to convert the problem into a series of locally

polyhedral problems [15, 16]. Indirect approaches do not take advantage

of inherent smoothness of parametric surfaces. Intermediate representations

fail to approximate surfaces with high curvature, while polyhedral approxi-

mations to complex models can grow large in the number of polygons.

Closest point algorithms that can locate CP on curved interaction sur-

faces lie at the core of direct methods for haptic rendering of parametric

models. These algorithms are similar to GO methods in that, once properly

initialized they update the location CP on the interaction surface to track

the movements of HIP. However, compared to the case with polyhedral mod-

els, the update rules are more involved for tracking on curved surfaces. One

6

direct approach to closest point tracking is due to Thompson et al. and uses

a first-order approximation and knot insertion to locate CP on a parametric

surface [17, 18] . Another approach is proposed in [19, 20], in which a globally

uniformly asymptotically stable feedback controller is designed to update the

location of CP to continually track HIP on the interaction surface. The algo-

rithm is robust to initialization errors on the interaction surface. Moreover,

the algorithm has been extended to handle surfaces formed by tiling several

surface patches together [21].

1.3 Collision Detection Algorithms

Collision detection is used to determine the contact points of geometric ob-

jects and has been mostly used in robotics, computational geometry and

computer graphics. Existing collision detection algorithms can be classi-

fied as broad and narrow phase algorithms. Broad-phase collision detection

algorithms work on identifying colliding objects whereas narrow-phase ap-

proaches try to detect colliding primitives. Most of the narrow-phase colli-

sion detection algorithms presented in the literature that are mostly based on

the algorithms proposed by Lin and Canny [9] and Gilbert [8], are developed

for polygonal models of continuously defined objects. In [8], a convex op-

timization algorithm computes the separation distance between two convex

polyhedra by using a Minkowski-sum iteration. Lin and Canny [9] proposed

the Voronoi marching algorithm for computing separation distance by track-

ing the closest features between convex polyhedra. The algorithm makes use

of Voronoi regions of the polyhedral object in order to find the closest features

between two polyhedra. The collision detection algorithm based on the Lin-

7

Canny algorithm is improved in [22] by introducing V-Clip (Voronoi-Clip)

system and in [23] by proposing the SWIFT algorithm that works based on

bounding volume hierarchies.

Collision detection algorithms that can directly work on parametric mod-

els, are less in number when compared to the algorithms developed for polyg-

onal models. Such an algorithm is presented in [24] by Lin and Manocha

that works on curved models composed of spline or algebraic surfaces. The

algorithms developed in [25] and [26] detect collisions based on solving a con-

strained minimization problem using iterative Newton methods. The work

in [27] demonstrates a direct parametric tracing method for sculptured mod-

els. The proposed tracking algorithm tracks the closest point on the surface

after initializing it with the closest point and works based on Newton itera-

tions. This algorithm is enhanced to work on moving surfaces in [28].

1.4 Friction Rendering

Friction is one of the fundamental aspects while physically interacting with an

environment. Grasp and manipulation of objects are only possible through

the existence of friction force. Furthermore, friction aids in the perception

of the shape and the texture of objects. Due to these significant aspects

of friction, friction rendering is an indispensable module of haptic rendering

systems. Human mechanoreceptors are very sensitive to even small changes

in the friction force such as the difference between the static and dynamic

friction due to the static and dynamic coefficient of friction [29]. There-

fore, friction force should be accurately computed and rendered via a haptic

interface so that the human operator can perceive the virtual environment

8

realistically. The challenge by rendering friction lies in the nonlinear char-

acteristic of friction which occurs at zero velocity and causes a discontinuity

between static and dynamic friction. In the Sections 1.4.1 and 1.4.2, friction

models and improved techniques for friction rendering are broadly discussed.

1.4.1 Friction Models

One of the classical friction models is Coulomb Friction, named after Charles-

Augustin de Coulomb, computes the friction force FC proportional to the

normal load FN . This friction model is governed by the equation, FC =

µFN where µ represents the coefficient of friction. The friction force at zero

velocity is not determined, it can take any value between FC and−FC . Figure

1.4.1(a) shows the friction force vs. velocity graph of the Coulomb friction

model.

Figure 1.4.1(b) represents the Coulomb friction in the presence of viscous

friction. Stiction is depicted in Figure 1.4.1(c) and defined as the friction

at rest. In the stiction model of friction, static friction resists against the

external forces up to a value and prevents the object from moving. It is a

multi-valued function that can take on any value between the two extremes

−FS and FS. The static friction force is described as a function of external

force Fe and is formulated as follows

F =

Fe if v = 0 and |Fe| < FS

FS sgn(Fe) if v = 0 and |Fe| ≥ FS

(1.2)

Another classical friction model is shown in Figure 1.4.1(d) where the

friction force decreases continuously. This is called Stribeck effect [30] and it

is represented as

9

a) b)

c) d)

F

V

F

V

F

V

F

V

Figure 1.4.1: Friction Models. (a) Coulomb friction model (b) Coulomb

friction in presence of viscous friction (c) Stiction model (d) Stribeck effect

F =

F (v) if v 6= 0

Fe if v = 0 and |Fe| < FS

FS sgn(Fe) otherwise

(1.3)

where F (v) is an arbitrary function.

The Karnopp friction model is developed by Karnopp [31] to overcome

problems with zero velocity detection in simulations. According to this

model, the zero velocity is determined using an interval, |v| < DV . As

long as |v| < DV , the friction force is a saturated version of external force as

seen in Figure 1.4.2. Otherwise, it is an arbitrary function of velocity. The

disadvantage of the model is that it is strongly dependent on the choice of

the value DV [32].

10

Friction

Velocity

DV

bp

Cp

Dp

bn

Cn

Dn

Figure 1.4.2: Karnopp friction model

In addition to the discussed friction models above, dynamic models of

friction are explained in the following. Formulations of these models were

found empirically.

The Dahl model introduced in [33] was developed for simulating control

systems with friction and it was used for adaptive friction compensation. The

Dahls friction model is developed based on the stress-strain curve in classical

solid mechanics. The following represents Dahl’s formulation of friction

dF

dx
= σ(1− F

Fc
sgn(v))α (1.4)

where x is the displacement, F the friction force, Fc the Coulomb friction

force, σ the stiffness coefficient and α a parameter determining the shape

of the stress-strain curve. This friction model exhibits the property of rate

independence which indicates that the model is only position-dependent since

it is only a function of the displacement and the sign of velocity [32].

Another dynamic friction model is the Bristle model introduced by Haes-

11

sig and Friedland [34]. This friction model is developed to capture the be-

havior of the microscopical contact points between two surfaces. The irregu-

larities of surface are modeled using randomly located bristles. Each contact

with bristles is thought of as a bond and as surfaces move relative to each

other the strain in the bond increases causing to rise the friction force. The

friction force in the Bristle model is formed as the following

F =
N∑
i=1

σ(xi − bi) (1.5)

where N is the number of bristles, σ the stiffness of the bristles, xi the relative

position of the bristles, and bi the location where the bond was formed.

The significance of this friction model is that it can capture the random

nature of friction. But due to its complexity, this model is inefficient when

used in simulations [32]. In order to make the bristle model more efficient,

Heassig and Friedland also proposed the reset integrator model in [34]. In

this model of friction the bond is kept constant by shutting off the increase

of the strain at the point of rupture instead of snapping a bristle.

The Lugre model represents another dynamic friction model and is based

on the same idea of the bristle model where friction force is calculated using

the deflection force of elastic springs [35]. The bristles deflect like springs

due to the applied tangential force. The bristle deflection depends on the

velocity and is low at low velocities. The deflection decreases with increasing

velocity which models the Stribeck effect. The Lugre model has the following

form

12

dz

dt
= v − σ0

|v|
g(v)

z

F = σ0z + σ1(v)
dz

dt
+ f(v)

(1.6)

where σ0 denotes the stiffness of the bristles, σ1 the damping and z the

average bristle deflection. The function g(v) models the Stribeck effect, and

f(v) is the viscous friction.

Further information about other dynamic models such as the friction

model by Briman and Sorine and models for lubricated contacts can be found

in [36], [37] and [38].

1.4.2 Approaches to Friction Rendering

In the literature, several researchers have adapted static and dynamic fric-

tion models to haptic rendering [13, 39–42]. More specifically, in [42], GO

method is extended to enable friction simulation based on the Coulomb fric-

tion model. The model captures the stick-slip characteristics of friction by

defining two distinct modes of operation: sticking and sliding. Similarly,

in [43], a friction cone algorithm is proposed that can accommodate the

stick-slip friction model. In order to manage the position of GO, the algo-

rithm forms a friction cone initiating at HIP and extending up to the object’s

surface. The circle of friction is formed as the intersection of the friction cone

with the polyhedral surface. During the interaction with the virtual object,

the algorithm initializes in the sticking mode, in which GO is set to and kept

still at the contact location until the GO moves out of the friction circle,

that is, the tangential component of the penalty force exceeds the static fric-

tion force threshold. When the GO moves out of the friction circle, a mode

transition is triggered and the sliding mode initializes by repositioning the

13

GO at the boundary of the friction circle. In the sliding mode, the GO stays

at the boundary of the friction circle and tracks the HIP as the user moves.

The algorithm can also handle curved parametric surfaces indirectly, through

construction of tangent planes.

An alternative friction rendering method proposed in [40] introduces snags

located on the objects surface in order to emulate stiction. Sticking begins

when HIP falls into a snag and continues until the user can apply a force

sufficient to leave the snag. When HIP encounters a snag, it is pushed towards

the center of the snag by a force tangent to the surface. When HIP is

not in a snag, it moves across the surface opposed by a friction force that

is proportional to the normal force. In addition to friction rendering, this

technique can simulate simple surface textures by varying snag distribution

on the surface. A similar approach to friction rendering is based on the bristle

model [34]. In this approach, virtual bristles randomly located on the sliding

surface imitate the friction by bonding to each other and breaking away [44].

Unfortunately, both of these approaches are computationally expensive for

real-time implementation.

In [41] the stick-slip friction is applied to haptic rendering based on a

modified version of Karnopp’s friction model [31]. This approach is advanta-

geous as it provides a remedy for the erroneous estimation of velocity at low

speeds. Velocity at low speeds governs the switching behavior from sliding

mode to stuck mode. In another study [45], a computational friction model

is proposed that implements a variation of Dahl’s friction model [33]. This

continuous model of friction is time-free and exhibits four regimes: sticking,

creeping, oscillating, and sliding. This model also accounts for the pre-sliding

displacement in the sticking regime. Thanks to its distance based implemen-

14

tation, the computational friction model is robust to noise and does not drift

under small bias forces unlike the original Dahl’s friction model, which is

prone to drift.

1.5 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 addresses the hap-

tic rendering approach of parametric models and discusses the details of the

feedback-stabilized closest point tracking algorithm. Simulation and real-

time implementation results of a haptic rendering system based on this algo-

rithm are presented in Chapter 2. Chapter 3 introduces the proposed friction

rendering algorithm and presents simulation and real-time implementation

results of the algorithm. In the last chapter, the contributions of this thesis

are summarized and the future work is discussed. In this chapter, a haptic

deformation modeling technique that makes use of D-NURBS geometry is

provided. The second part of the future work is the human subject experi-

ments designed to measure the effects of friction on perception which is also

explained in Chapter 4.

1.6 Contributions

This thesis implements a haptic rendering algorithm based on a feedback-

stabilized tracking algorithm [1] and extends this algorithm by introducing a

novel friction rendering approach. The feedback-stabilized tracking and fric-

tion rendering algorithms are verified through simulations and implemented

in real-time using Simulink-environment. Both algorithms possess the fol-

15

lowing properties:

- computational efficiency due to the relative simplicity of the algorithms

- immunity to start up errors

- robustness to disturbances

- being appropriate for haptic rendering due to fast and easy computation

- capability to treat parametric models directly and to work on polygonal

models

- capability of handling surface patches and objects formed by tiling-

together surface patches

- being suitable for real-time implementation

The friction rendering algorithm has the following advantages:

- it directly operates on parametric surfaces,

- it handles smooth and highly curved shapes,

- it guarantees force continuity during sharp edge crossings of virtual

objects,

- it eliminates the need for extra smoothing algorithms.

16

Chapter 2

Haptic Rendering

This chapter introduces haptic rendering of continuous parametric surfaces.

The formulations for modeling of parametric surfaces are presented and the-

orem of a feedback-stabilization based closest point tracking algorithm is

stated. Simulation and real-time implementation results of the algorithm

are represented. The haptic rendering algorithm is compared to Newton-

Rhapson based haptic rendering and simulation results are shown.

2.1 Haptic Rendering of Parametric Surfaces

The haptic rendering algorithm presented in this thesis is based on a closest

point (CP) tracking algorithm which is broadly discussed in Section 2.1.2.

This tracking algorithm can operate on continuous parametric surfaces using

a direct approach. As mentioned in Section 1.2, current haptic rendering

approaches make use of parametric representations using indirect methods

to calculate force response of a haptic rendering system. However, these

indirect approaches necessitate a computationally expensive conversion from

continuous parametric models to a large number of polygonals. Another

disadvantage of indirect approaches is that they fail to approximate complex

17

and highly curved surfaces. As a remedy to these limitations, we developed an

algorithm that requires fewer computations and can properly handle complex

surfaces as it can directly operate on continuous parametric models.

For the modeling of parametric surfaces, NURBS (Non-Uniform Ratio-

nal B-Spline) models are used which are the de facto standard throughout

the CAD/CAM/CAE industry. NURBS are advantageous in terms of higher

order continuity, compact representation and exact computation of surface

normals. The definitions of a NURBS curve and surface and important prop-

erties of NURBS models are given in the next section. The remaining sections

of this chapter discuss a comparison of our haptic rendering algorithm with

a Newton-Rhapson based approach and boundary handling of parametric

models.

2.1.1 Modeling of Parametric Curves and Surfaces

NURBS modeling is a method of representation and design of complex shapes

that is mostly used in design industry. NURBS offer one common mathemat-

ical formulation for both analytical and free form shapes. They are invariant

under affine and perspective transformations. Fast evaluation of NURBS can

be carried out by numerically stable and accurate algorithms. Various com-

plex shapes can be modeled using NURBS geometry. The definitions of a

B-spline and NURBS curve are given in the following as explained in greater

detail in [46].

Given a set of n+1 control points P0, P1, ..., Pn, a Bezier curve is defined

as

C(u) =
n∑
i=0

PiBi,n(u) (2.1)

where Bi,n(u) is a Bernstein polynomial and u ∈ [0, 1]. A B-spline is a

18

generalization of the Bezier curve and is defined using a knot vector with a

nondecreasing sequence U = u0, u1, .., um with ui ∈ [0, 1] and control points

P0, ..., Pn. The curve representation of a B-spline curve is of the following

form:

C(u) =
n∑
i=0

PiNi,p(u) (2.2)

where p = m − n − 1 and the ith B-spline basis function of p-degree (order

p+1), denoted by Ni,p(u), is defined as

Ni,0(u) =

1 if ui ≤ u < ui+1

0 otherwise

(2.3)

Ni,p =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

After introducing the basis functions of a B-spline, a NURBS curve of

pth-degree is defined by

C(u) =

∑n
i=0Ni,p(u)wiPi∑n
i=0 Ni,p(u)wi

a ≤ u ≤ b (2.4)

where the Pi are the control points, the wi are the weights and Ni,p(u) are the

pth-degree B-spline basis functions defined on the nonperiodic knot vector

U =

a, .., a︸ ︷︷ ︸
p+1

, up+1, .., um−p−1, b, .., b︸ ︷︷ ︸
p+1

The limits of the parameter u are assumed to have the values of a = 0

and b = 1 and wi > 0 for all i.

19

Similarly a NURBS surface of degree p in the u direction and of degree q

in the v direction is given by

S(u, v) =

∑n
i=0

∑
j = 0mNi,p(u)Nj,q(v)wi,jPi,j∑n

i=0

∑
j = 0mNi,p(u)Nj,q(v)wi,j

(2.5)

where Pi,j form the bidirectional control net, wi,j are the weights, and Ni,p(u)

and Nj,q(v) are the nonrational B-spline basis functions defined on the knot

vectors

U =

0, .., 0︸ ︷︷ ︸
p+1

, up+1, .., ur−p−1, 1, .., 1︸ ︷︷ ︸
p+1

V =

0, .., 0︸ ︷︷ ︸
q+1

, vq+1, .., us−q−1, 1, .., 1︸ ︷︷ ︸
q+1

where r = n+ p+ 1 and s = m+ q + 1

The shape of a NURBS curve is represented by its control points Pi and

a point on the curve is computed by taking a weighted sum of these control

points. NURBS models have the feature of local support which allows a

single control point to influence only those intervals where it is active. This

property indicates that a part of a NURBS model can be modified without

having to change the other parts of the geometry. More control on a NURBS

curve can be gained by adding more control points and changing the weights

which provides a better approximation to the curve. The knot vector of

a NURBS curve determines where and how the control points affect the

NURBS curve.

2.1.2 Feedback-Stabilized Closest Point Tracking Algorithm for

Convex Parametric Surfaces

In penalty-based haptic rendering algorithms, the restoring forces fed back

to the user are calculated proportional to the amount of penetration of HIP

20

into the surface. Hence, the ability to locate the relevant closest point on

the interaction surface at interactive rates is a crucial element of such haptic

rendering algorithms. In this section, we review the closest point tracking

algorithm introduced in [19, 21], which operates on parametric surface models

in a direct manner.

The core idea and implementation of the closest algorithm is demon-

strated on a smooth curve depicted in Figure 2.1.1. Let u be a parameter

and
−→
f (u) represent the parametric curve. At any parameter value u, the

curve
−→
f (u) maps to a point in space. Let

−→
f̂u(u) denote the unit tangent

vector at u. Then, the unit surface normal
−→
n̂ (u) at u can be calculated by

taking the cross product of the unit tangent vector with the unit vector
−→
k̂ ,

which points out of the plane.

HIP

TP
Parametric curve:

Projection error:

CP

Γ

Ψ

f (u)

k

Unit surface
normal

Unit tangent: f (u)u
^

^

n(u)^

.

Γ*

Figure 2.1.1: Feedback-stabilized closest point tracking algorithm

The algorithm is founded on the fact that the line connecting HIP to

CP needs to be perpendicular to the surface tangent at CP. This is achieved

utilizing a feedback controller that checks for this condition at each instant

of time and continually updates the location of a test point (TP) until it

converges to CP. In particular, given a TP on the parametric curve, the

algorithm forms the vector
−→
Γ initiating at HIP and extending to TP. Then,

21

the projection error Ψ is calculated by projecting the
−→
Γ vector on the unit

tangent vector evaluated at TP. The controller updates the location of TP

by determining its speed of movement along the curve, that is, by setting

u̇TP = −K Ψ, where K is the positive controller gain.

In [21], the algorithm has been extended to surface to surface tracking

and its uniformly asymptotical stability is proven for proper selection of the

gain K. Uniform asymptotical stability of the algorithm implies robustness

against numerical noise and more importantly against initialization errors

on the interactive surface. Under some mild assumptions on convexity, the

global convergence of the algorithm can also be guaranteed, rendering any

initialization on the parametric surface as an acceptable one. Requiring a

few function evaluations, simple vector operations and an integrator, the

algorithm is computationally efficient and easy to implement.

Let the magnitude of the velocity of HIP N−→v HIP be bounded by NvHIP .

Also let the workspace be bounded, ensuring that the magnitude of
−→
Γ is

bounded by a positive constant Γ .

Theorem 2.1.1 If the image of the mapping
−→
f (u) : [0, 1] → <2 defines

a convex parametric curve C, HIP and C are in continuous motion with

respect to one another; given a positive convergence parameter ε and a con-

troller gain that satisfies K > 2 Γ NvHIP

ε2
, then the controller u̇ = −KΨ renders

the minimum distance point CP ∗ uniformly practically asymptotically stable

over the curve C.

Sketch of the Proof The proof is based on a control Lyapunov function

which is defined as

V =
1

2

(−→
Γ 2 −

−→
Γ ∗2
)

(2.6)

22

where
−→
Γ =

−→
f (u)−−→x HIP and Γ∗ is the Γ evaluated at the closest point. The

control Lyapunov function V is continuous, positive definite and decrescent

(see [1]). To prove uniform practical asymptotic stability of the algorithm,

the negative definiteness of the time derivative of the control Lyapunov func-

tion is to be shown. The time derivative of V is given by

V̇ =
−→
Γ ·

Nd

dt

−→
Γ −

−→
Γ ∗ ·

Nd

dt

−→
Γ

∗

= Γ · (
−→
f u(u) u̇− N−→v HIP)− Γ∗ · (

−→
f ∗
u(u)u̇∗ −N −→v HIP)

= (Γ ·
−→
f u(u)) u̇− (Γ− Γ∗) · N−→v HIP

(2.7)

where N is the fixed world reference frame. Next, define the projection error

as Ψ =
−→
Γ ·
−→
f u(u). Now if the control law u̇ is selected as u̇ = −K Ψ, and

substituted into equation 2.7, then

V̇ = −K Ψ2 −
(−→

Γ −
−→
Γ ∗
)
· N−→v HIP (2.8)

Given a positive number ε sufficiently larger than zero, if Ψ > ε, then the term

−KΨ2 dominates |(
−→
Γ −
−→
Γ ∗) ·NvHIP | and renders V̇ negative if K > 2 Γ NvHIP

ε2
as

explained in the following.

|(
−→
Γ −

−→
Γ ∗) · NvHIP | < |

−→
Γ −

−→
Γ ∗| |NvHIP | (2.9)

|
−→
Γ ∗| < |

−→
Γ | ⇒ |

−→
Γ −

−→
Γ ∗| < 2

−→
Γ < 2Γ (2.10)

|N−→v HIP | < NvHIP (2.11)

If we substitute the upper boundaries of N−→v HIP and (
−→
Γ −
−→
Γ ∗) shown in inequal-

ities 2.10 and 2.11, into the right hand side of the inequality (2.9), we can show

that

|(
−→
Γ −

−→
Γ ∗) · NvHIP | < 2 Γ NvHIP (2.12)

−KΨ2 + |(
−→
Γ −

−→
Γ ∗) ·N −→v HIP | < 0 (2.13)

(2.14)

23

can be assured if the following inequality holds

K >
2 Γ NvHIP

Γ2
(2.15)

And since Ψ > ε,

K >
2 Γ NvHIP

ε2
(2.16)

Rendering V̇ negative definite for a given ε assures uniform practical stability.

However, V̇ can be shown to be negative definite by bounding it with a negative

definite function of the state ζ as done in [1], which assures uniform practical

asymptotic stability. The uniform asymptotic stability of the algorithm can be

shown by analyzing the case Ψ < ε, and adding a feed forward compensation term

when in the ε ball [1].

2.1.3 Comparison of the Haptic Rendering Algorithm to a Newton-

Rhapson based Approach

Figure 2.1.1 presents typical trajectories during closest point tracking of the

feedback-stabilized algorithm [21] and one of the commonly employed meth-

ods based on intermediate representations [47]. The trajectories shown in

Figures 2.1.1(a) and (b) are achieved by letting HIP approach to the para-

metric curves by following a straight line. The velocity of HIP is kept constant

during its motion along the sloped line. In Figure 2.1.1, the colored straight

lines between the HIPs trajectory and the curves represent the minimum dis-

tances between HIPs current position and the curve. The pink lines in Figure

2.1.1(a) which are normal to the curve indicate that feedback-stabilized algo-

rithm guarantee convergence to CP independent of the amount of curvature

involved while the blue lines that are not perpendicular to the curve in Figure

2.1.1(b) show that methods based on discretizations/intermediate represen-

tations may not converge around high curvature regions of the curve. As a

24

consequence, the feedback-stabilized algorithm strongly contributes to real-

istic haptic interaction even with the highly curved objects by eliminating

discontinuous force artifacts.

(a) (b)

Figure 2.1.2: Typical trajectories during closest point tracking of (a) the

feedback-stabilized algorithm (b) the methods based on intermediate repre-

sentation

2.1.4 Boundary Handling using Voronoi Diagrams

Operating on the projection errors, the controller can update location of CP

to continually track HIP on an interaction surface. However, often paramet-

ric surfaces are formed by tiling several surface patches together. In such a

case, the determination of the relevant surface patch that represents the in-

teraction surface is required. To handle such cases, the control based closest

point tracking algorithm has been extended to handle tiling several surface

patches [21]. To determine the relevant surface patch, a switching controller

is used, where the mode switches are triggered and the proper state ini-

tializations are handled via a finite state machine. The finite state machine

25

governing the discrete behavior of the controller is formed offline based on the

Voronoi regions of the object’s features and their connectivity1. The finite

state machine performs a feature-based tracking similar to the algorithms

derived for polyhedral collision detection [9] and [10].

S2

S

V

2

S2 Vc1

VS11

S1

S1

c1

c1

a)

b)

Figure 2.1.3: Boundary handling using Voronoi regions [1]

2.1.5 Simulation Results of Haptic Rendering

The visualization of virtual objects used in the simulation and real-time im-

plementation are carried out using the NURBS SIntef Spline Library (SISL),

1Even though the determination of the Voronoi regions of a complex object can be

computationally expensive, the real-time performance of the algorithm is not affected

since this computation is performed offline.

26

developed and maintained by the geometry modeling group at SINTEF ICT,

Department of Applied Mathematics [48]. The SISL code is appropriate to

be used in real-time implementations of haptic rendering algorithms since it

is written in C and supports curve/surface creation and manipulation using

NURBS geometry while maintaining a high degree of accuracy in numerical

calculations.

1

3

2

a

b

c

d
e

f

HIP

CP

penetration depth

Figure 2.1.4: Internal and external Voronoi regions of a virtual object

Figure 2.1.4 depicts a virtual object that is created by joining three

NURBS curves. Each NURBS curve is created using four control points

and is represented with orange dots. On the corners of the virtual object,

two control points coincide that belong to two different adjacent curves. The

virtual object is divided into three internal Voronoi regions whereas the outer

space of the environment are tiled into six external Voronoi regions that are

denoted by a−f . Before a collision with the virtual object, external Voronoi

27

Edge A

Corner B

Edge C

Corner D

Edge E

Corner F

Figure 2.1.5: State flow of Voronoi regions of the virtual object seen in 2.1.4.

The corresponding Voronoi regions are shown with same letters as in Figure

2.1.4

regions help to determine the relevant curve to initialize the CP so that HIP

can be tracked faster and more efficiently by CP. The same idea holds for

the internal Voronoi regions that are used after a collision with the virtual

object. The boundaries of the external Voronoi regions shown in Figure 2.1.4

are determined by using the normals of the curves at the end points. Figure

2.1.5 shows the state machine that is used for the determination of active

Voronoi regions of the virtual object seen in Figure 2.1.4.

The haptic rendering system shown in Figure 2.1.4 demonstrates the po-

sitions of HIP and CP after a collision of the virtual object. The minimum

distance between HIP and CP is found using the feedback-stabilized tracking

algorithm. As mentioned in Section 1.2, the restoring force after the collision

with the virtual object is calculated by multiplicating the penetration depth

with the stiffness of the virtual object as following

28

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

Fo
rc

e
(m

N
)

Penetration Depth (mm)

Figure 2.1.6: Force response graph of a haptic rendering system

29

F = k∆x (2.17)

where k is the stiffness of the virtual object and ∆x the penetration depth.

The force response arising from the interaction between HIP and the

virtual object is shown in Figure 2.1.6. As HIP penetrates deeper into the

virtual object, the restoring force increases proportional to the penetration

depth.

2.1.6 Real-Time Implementation of Haptic Rendering

Figure 2.1.7: Measured force in real-time

Figure 2.1.7 depicts the haptic rendering system used in the real-time

implementations where the user interacts with the virtual object through

the probe of a 2-DoF Pantograph. The haptic update rate is set to be 1kHz

30

Figure 2.1.8: The left hand side of the figure represents the virtual object

that the user interacts with and the computed forces are shown in the right

hand side of the figure.

and the stiffness of the virtual object is selected as 100 N/m. Throughout the

implementation the user interacts with the virtual object intermittently. The

zero value of the force graph represented in Figure 2.1.8 depicts the instants

when the user does not penetrate into the virtual object. The increasing

values of the graph represent the user’s motion while penetrating deeper into

the virtual object and the decreasing intervals indicate that the user ends

the interaction with the virtual object.

31

Chapter 3

Friction Rendering

In this chapter, the details of the proposed friction rendering algorithm are

explained and discussed. The working principle of stick-slip friction rendering

algorithm is illustrated with sketches. Simulations of friction rendering in 2-

and 3-D and real-time implementation results verifying the mode changes

from static to dynamic friction are represented.

3.1 Friction Rendering Algorithm

The friction rendering algorithm introduced in this thesis provides a direct

method to handle parametric surface models. Unlike the existing friction

rendering algorithms in the literature, it does not rely on the algorithms in-

troduced for polyhedral surfaces. The algorithm is inherently stable (uniform

asymptotic stability) and can handle surfaces with high curvature. Further-

more, this algorithm allows transitions from sticking to sliding and sliding

to sticking, as well as surface to surface transitions, without introducing dis-

continuous force artifacts, which are easily perceivable by and distractive to

users. The algorithm is computationally efficient, simple to implement, and

possesses an intuitive physical interpretation. The algorithm enables easily

32

tuning of the change in friction coefficient during the mode transitions to

enable rendering of the Stribeck effect. Moreover, thanks to its feedback-

stabilized core, the algorithm is robust against drift and numerical noise.

3.1.1 Stick Slip Friction and Stribeck Effect

The implementation of stick-slip friction is based on a variation of the stic-

tion model seen in Figure 3.1.1(a) that makes use of static and dynamic

coefficients of friction to compute the friction force. The stiction model is

varied such that the reduction from the static coefficient of friction to the

dynamic coefficient of friction is modulated during the transition from stick-

ing to sliding to simulate the velocity dependent Stribeck effect as depicted

in 3.1.1(b). In particular, the effect is simulated by interpolating between

the values of the static and dynamic coefficients of friction based on the time

rate of change of GO position during the mode transition.

Velocity

Friction Force

Velocity

Friction Force

(a) (b)

Figure 3.1.1: a) Stiction model of friction, b) Stiction model of friction with

Stribeck effect

The friction rendering algorithm consists of three distinct modes of oper-

ation: Stuck, slip, and transition from stuck to slip. The switchings between

these modes with proper initializations are governed by a finite state machine

33

as shown in Figure 3.1.2. The mode transitions take place as follows. The

algorithm is initialized in the stuck mode and stays in this mode until the

breakaway force threshold is exceeded. If CP stops or changes the direction

of its movement during the stuck mode, a self transition is triggered that

resets the location of GO to CP. Once the breakaway friction force threshold

is exceeded, the algorithm goes into the mode that handles the transition

from stuck to slip. This mode is active until GO converges to CP. As soon

as GO and CP become collocated, another mode switching occurs and the

algorithm enters the slip mode. During the slip mode if CP stops or changes

the direction of movement, then the algorithm is set back to the stuck mode.

Otherwise, a transition out of the stuck mode is triggered only when the

applied normal force exceeds the dynamic friction force threshold dictated

by the stiction model of friction. In this case, the algorithm enters the stuck

mode and GO is reset to a location that ensures force continuity.

Stuck to Slip
Transition Slip

Stuck

FT > FN µs FT (k)
FN (k-1)

> µs

sgn(v(k)) ≠
sgn(v(k-1))

GO = SP~

OR

STATIC

DYNAMIC

Figure 3.1.2: Finite state machine of the friction rendering algorithm

34

Figures 3.1.3(a)–(e) present schematic representations of several critical

stages of the algorithm, demonstrating the conditions governing state tran-

sitions and the formulas used to calculate the force
−→
F forcefb to be fed back

to the user. At any instant of time, this force is applied at a point called

the point of application (PA). At PA, the force can be decomposed into two

vector components: the friction component
−→
F T and the normal component

−→
F N . Hence, the total force applied to the user at PA is given as the vector

sum of these two forces:
−→
F forcefb =

−→
F T +

−→
F N .

In Figure 3.1.3(a), the algorithm initializes in the stuck state and HIP is

located in the virtual object after the collision. In this mode, GO is set to CP

and kept still while HIP continues its motion, until the breakaway friction

force threshold is exceeded, that is, the magnitude of tangential force exceeds

the magnitude of the normal force times static coefficient of friction. This is

the case shown in Figure 3.1.3(b).

Once the tangential force calculated in the stuck mode exceeds the break-

away friction force threshold, the transition from stuck to slip becomes ac-

tive. In this transition mode, the feedback-stabilized closest point tracking

algorithm is initialized with GO location. As depicted in Figure 3.1.3(c), the

feedback controller ensures that GO quickly converges to CP. While the GO is

converging towards the CP, the friction coefficient is continuously modulated

with respect to the projection error. In particular, the friction coefficient

is adjusted such that it is equal to the static friction coefficient at the first

time step and to the dynamic friction coefficient when GO converges to CP.

Note that the projection error is inversely proportional to tangential speed

of GO; therefore, the modulation of the friction coefficient renders velocity

dependent Stribeck effect.

35

HIP
GO = CP = PA Virtual Object

Stuck

HIP
GO = PA

Stuck
CP

a b

FT = - k (rHIP - rGO) . fu

FN = - k (rHIP - rGO) . n
FT < FN µs

FT = - k (rHIP - rGO) . fu

FN = - k (rHIP - rGO) . n
FT < FN µs

HIP
GO = PA

Stuck to Slip

CP

c

FT = - µ(ψ) FN

FN = - k (rHIP - rGO) . n
FT > FN µs

HIP

GO = CP = PA

Slip to Stucke

FT = - k (rHIP - rGO) . fu

FN = - k (rHIP - rGO) . n
FT (k)

FN (k-1)
> µs

HIP

GO = CP = PA

Slipd

FN = - k (rHIP - rGO) . n
FT > FN µs

FT = - µd FN

Figure 3.1.3: Schematic representations demonstrating critical stages of the

friction rendering algorithm

36

Slip mode initiates when GO converges to CP as in Figure 3.1.3(d). In the

slip mode, since the friction force is directly proportional to the normal force,

GO is set as CP and tracks the motions of HIP on the surface. A transition

out of this mode to the stuck mode can be triggered if CP stops or changes

direction of its motion. Another transition is possible if a sudden, sufficiently

large increase is observed in the normal force. The check on normal force is

performed by comparing the coefficient of static friction to the ratio of the

tangential force at the previous state to the normal force at the current state.

In Figure 3.1.3(e), the instant when the slip to stuck transition takes

place is depicted. This transition is triggered when the ratio of the tangential

force at the previous state to the normal force at the current state exceeds

the coefficient of static friction. When such a mode switch is triggered, GO

and CP are collocated causing the tangential force being set to zero which

would be incorrect. Therefore, after this mode switch the tangential force

is calculated such that the friction force at previous state is added to the

value of the tangential force at the current state. Thus, the tangential force

is kept continuous after this mode switch and prevented from being set to 0

from where it will begin to grow as HIP moves in the tangential direction.

Following the transition from slip to stuck, except the value added to the

tangential force, GO behaves as depicted in Figure 3.1.3(c). The Pseudo

code of the friction rendering algorithm is presented in Algorithm 1.

37

Algorithm 1 Friction Rendering Algorithm.

Require: A connectivity graph (V,E) of Voronoi Regions, a set of surfaces S,

static µs and dynamic µd coefficients of friction, surface stiffness K, convergence

parameter ε.

Ensure: Active feature F [k], curvilinear coordinates of PA[k], the magnitudes of

friction force Ff [k] and normal force FN [k].

rHIP [1],vHIP [1] ← get position and velocity of HIP from the haptic interface;

(V[1], F [1]) ← determine which Voronoi region HIP is in and the associated

surface feature;

rGO[0] ← initialize GO on the active feature F [1];

state = STATIC;

Voronoi Switch Flag = True;

Stuck Transition Flag = True;

Force Continuity Flag = False;

k = 1;

rGO[k], collision← track the closest point with respect to F [k], rGO[k−1], and

rHIP [k]

while True do

if ¬collision then

state = STATIC;

Stuck Transition Flag = True;

Force Continuity Flag = False;

FN [k] = 0;

Ff [k] = 0;

uPA = Null

else

if state = STATIC & Stuck Transition Flag then

38

rstuck = rGO[k];

Stuck Transition Flag = False

end if

if state = STATIC then

rGO[k] = rstuck

end if

F [k] = K ‖(rGO[k]− rHIP [k])‖;

uPA[k] ← determine curvilinear coordinates of rGO[k];

FT [k] ← project F [k] onto unit tangent at PA;

FN [k] ← project F [k] onto unit normal at PA

case state of

STATIC:

Voronoi Switch Flag = False

if FT [k] < µs FN [k] then

if Force Continuity Flag = True then

Ff [k] = Foffset + FT [k]

else

Ff [k] = FT [k]

end if

else

State = DYNAMIC;

Foffset = Ff [k];

Voronoi Switch Flag = True;

Stuck Mode = False

end if

DYNAMIC:

if sign(vHIP [k]) 6= sign(vHIP [k − 1]) then

state = STATIC;

39

Stuck Transition Flag = True;

Force Continuity Flag = False

else if µd FN [k] > µs FN [k − 1]

state = STATIC;

Stuck Transition Flag = True;

Force Continuity Flag = True;

Foffset = Ff [k]

else

Ψ ← calculate the projection error with respect to F [k], rGO[k],

and rHIP [k]

if Ψ > ε then

µ[k] ← modulate friction coefficient based on Ψ to imitate

Stribeck effect

else

µ[k] = µd

end if

if Force Continuity Flag = True then

Ff [k] = Foffset + µ[k] FN [k]

else

Ff [k] = µ[k] FN [k]

end if

end if

end case

k = k+1;

xHIP [k],vHIP [k] ← get position and velocity of HIP from the haptic

interface;

if xHIP [k− 1] ∈ V[k− 1] and xHIP [k] /∈ V[k− 1] & Voronoi Switch Flag

then

40

(V[k], F [k]) ← track the relevant Voronoi region and the associated

surface feature

else

(V[k], F [k]) = (V[k − 1], F [k − 1])

end if

rGO[k], collision ← track the closest point with respect to F [k], rGO[k−1],

and rHIP [k]

end if

end while

3.1.2 Static Friction at a Corner

The friction rendering algorithm can operate on objects that consist of one or

more parametric surfaces. In case of multiple surfaces, the switchings among

the surfaces must be handled carefully. When the friction rendering algo-

rithm is in the slip mode, then the transition from one interaction surface to

another is dictated by the Voronoi regions of the surfaces and all the calcu-

lations are performed with respect to the interaction surface, in the Voronoi

region of which HIP lies. However, these transitions are handled differently

when the friction rendering algorithm is in the stuck mode. In particular, if

the algorithm is in the stuck mode and HIP moves from one Voronoi region

to another, the Voronoi region based switching of interaction surface is de-

activated until the breakaway force is overcome. Once the breakaway force

threshold is exceeded, GO is released on the updated interaction surface to

converge to CP. Deactivation of Voronoi switching is necessary, since, other-

wise, the algorithm would transition to the slip mode before the breakaway

force threshold is overcome.

41

Static friction at the corner is of importance when a user holds an object

close to its corner. Such a case is illustrated in Figure 3.1.4 with an object

constructed using three parametric curves. In the figure, the internal Voronoi

regions of the objects are marked as 1–3.

1 2

3

virtual
object

Figure 3.1.4: Static friction at a corner

3.2 Simulation Results

3.2.1 Friction Rendering in 2-D

The virtual object used in the experiments consists of two NURBS curves

that merge at a vertex as shown in Figure 3.2.1(a). The straight lines at both

ends of the NURBS curves represent the Voronoi regions associated with

these curves and the vertex. Since the curves are convex, each straight line

is perpendicular to the corresponding end of the curve to form the Voronoi

regions.

The virtual object is assumed to have a stiffness of 1000 N/m and the

static and dynamic coefficients of friction are set as 0.7 and 0.5 respectively.

The left and right curves of the virtual object in Figure 3.2.1(a) are referred to

42

as the first and the second surfaces respectively. When the simulation starts,

HIP is positioned outside the virtual object and within the Voronoi region

of the first surface (see Figure 3.2.1(b)). During the simulation, HIP tracks

a pre-determined path as depicted in Figure 3.2.1(a). The pre-determined

path is set such that HIP penetrates the first surface in Figure 3.2.1(a) until a

certain depth is reached, and does so in the direction that is perpendicular to

the interaction surface (see Figures 3.2.1(b)–(c)). Then, in Figures 3.2.1(c)–

(e) HIP moves parallel to the surface towards the vertex, while keeping its

penetration depth constant. In Figure 3.2.1(f), HIP penetrates deeper into

the virtual object along the surface normal to demonstrate a transition from

sliding to stuck mode. Next, as seen in Figures 3.2.1(g)–(h) HIP moves

parallel to the surface until sliding is achieved and then it moves out of the

virtual object (see Figure 3.2.1(i)). As seen in Figure 3.2.1(i), HIP collides

with the object for the second time at a location close to the corner. It

penetrates the object along the surface normal and then approaches to the

second curve along the horizontal direction (see Figures 3.2.1(j)–(l)). The

second collision of HIP with the object aims to demonstrate static friction

at corner whereas the rest of the pre-determined path aims to illustrate the

stick-slip behavior of the friction rendering algorithm.

Figure 3.2.2 represents the frictional and cumulative feedback forces cal-

culated during the execution of the pre-determined path in Figure 3.2.1(a). A

linear increase in the cumulative force is observed until the marker 1, as HIP

penetrates deeper into the virtual object (see Figures 3.2.1(b)–(c)). During

the 1 → 2 interval, the algorithm is in the stuck mode and the friction force

begins to increase as the user tries to apply a tangential force to overcome

the breakaway friction force threshold (Figures 3.2.1(d)).

43

Voronoi
Region-1

Voronoi
Region-2

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.2.1: Snapshots depicting the location of HIP and GO during the

simulation, in which HIP tracks a pre-determined path.

At the marker 2, the friction force in the stuck mode rises up to the

breakaway friction threshold and a switching from the stuck mode to the slip

mode is triggered. This transition takes place during the 2 → 3 interval,

where the static coefficient of friction is gradually reduced to the dynamic

coefficient of friction (see Figure 3.2.3). Note that the modulation of the

friction coefficient is based on the tangential velocity of the GO; hence, this

transition provides a velocity dependent transition effect. In this particular

simulation, the controller gains are selected to smooth the transition effect by

letting the transition take place for a longer duration in time. The continuous

change in friction force during this transition can be observed in the intervals

2 → 3, 6 → 7 and 12 → 13 in Figure 3.2.2.

44

At the marker 3, HIP begins to penetrate into the virtual object (see

Figure 3.2.1(e)) where the response force and friction force increase due to

the increasing normal force . At 4, the condition for transition from sliding

to stuck mode is met but HIP continues its motion along the surface normal

as seen in Figure 3.2.1(f). At 4, the continuity of the friction force during the

transition from slip to stuck mode is represented. During the 4 → 5 interval

HIP continues its penetration and since there is no tangential force to be

balanced by a friction force, the friction force is kept still until 5. During the

interval 5→ 6 HIP moves parallel to the surface as in the 1→ 2 interval (see

Figures 3.2.1(g)–(h)). Hence the friction force increases until it reaches the

breakaway friction threshold at the marker 6. The transition from the stuck

mode to the slip mode takes place in the 6 → 7 interval and the algorithm

stays in the slip mode during the 7 → 8 interval (see Figures 3.2.1(g)–(h)).

At 8, HIP begins to move out of the virtual object and it stays out of the

virtual object during the 9 → 10 interval (see Figure 3.2.1(i)). In this in-

terval the friction and cumulative forces are calculated as zero since there

is no collision with the object. At 10, once again HIP penetrates into the

object along the surface normal until 11 as seen in Figure 3.2.1(j). The cu-

mulative force increases due to the increase of normal force and there is no

change in the friction force. At 11, HIP continues its motion horizontally

towards the second curve (see Figure 3.2.1(k)). Since the breakaway force

is not overcome during the interval 11 → 12 and the algorithm is in stuck

mode, Voronoi switching is not activated until 12, when the breakaway force

threshold is overcome, even though HIP has already crossed the Voronoi

switching boundary (see Figure 3.2.1(k)). At 12, the breakaway force thresh-

old is overcome and transition from slip to stuck mode is presented in the

45

12 → 13 interval (see Figure 3.2.1(l)). The steep decrease in the cumulative

and friction forces in this interval is due to the sharp corner, as depicted in

the Figure 3.2.1(a).

0 2000 4000 6000 8000
0

5

10

15

20

25

30

35

Simulation Time

Fo
rc

e
[N

]

Friction Force
Response Force

2

6

7

4

109

5
8

3
1

11

12

13

Figure 3.2.2: Plots representing the frictional and normal forces calculated

during the simulation

Since the friction force is calculated based on the position of GO, it is

meaningful to examine its change with respect to CP. Figure 3.2.4 presents

the change in the parameter values u ∈ [0 1] that locate CP and GO with

respect to time, during the execution of the pre-determined path as explained

above. Until the marker 1, both GO and CP stay collocated while perpen-

dicular penetration takes place. The interval 1 → 2 defines the stuck mode,

in which the laws of static friction apply. In this interval, CP moves as user

tries to apply a tangential force to overcome the breakaway friction force

46

1142 1205 1268 1331 1394 1457 1520 1583 1646 1709
-66

-64

-62

-60

-58

-56

-54

Simulation Time

Pr
oj

ec
tio

n
Er

ro
r

0.45

0.5

0.55

0.6

0.65

0.7

Co
e�

ci
en

t o
f F

ric
tio

n

Figure 3.2.3: Simulation of the Stribeck effect through the modulation of the

coefficient of friction during transition from stuck to slip mode based on the

velocity of GO

threshold, while GO stays fixed. The breakaway friction force threshold is

overcome at the marker 2 and GO is released to converge to CP. The tran-

sition from the stuck mode to the slip mode takes place during the 2 → 3

interval, while GO is converging towards CP. At marker 3, GO and CP are

collocated and the slip mode is triggered. During the slip mode in 3 → 4

interval, GO and CP stay collocated. Although stuck mode is triggered at

the marker 4, GO and CP are still collocated which is due to the motion

of HIP along the surface normal. During the interval 4 → 5, HIP exhibits

the same motion as in the 1 → 2 interval. Hence, GO stays fixed in the

interval 5 → 6 whereas it converges towards CP in the 6 → 7 interval. From

47

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Time

u

GO
CP

1
2

3 5

6

7

8

9 10 11
12

13
4

Figure 3.2.4: Changes in the positions of GO and CP while executing the

pre-determined path

the marker 7 to 9, the slip mode applies as HIP continues its motion paral-

lel to the surface and then moves out of the virtual object; hence, GO and

CP stay collocated throughout this interval. During the interval 9 → 10,

HIP is outside the virtual object and GO and CP are kept collocated. HIP

penetrates into the object along the surface normal during the interval 10

→ 11 during which stuck mode is active and GO and CP stay collocated in

a similar manner as in the 4 → 5 interval. At the marker 11, HIP moves

towards the second curve in the horizontal direction in order to transition

to slip mode. Therefore, during the interval 11 → 12, GO stays fixed and

CP tracks HIP. At the marker 12, HIP is in the second Voronoi region and a

48

change from stuck to slip mode is triggered. Both GO and CP are reset to

zero since after the marker 12 force calculations are carried out based on the

second curve and second curve is parameterized with the parameter values

u ∈ [0 1], starting at the end of the first curve. During the interval 12 → 13

dynamic friction applies and GO and CP move collocated.

3.2.2 Friction Rendering in 3-D

The transitions between the sticking and sliding modes of the friction ren-

dering algorithm are also tested on a NURBS surface. The visualization

of haptic rendering is carried out using OPENGL and the OPENGL Util-

ity Toolkit (GLUT). The unidirectional communication between Simulink

and Integrated Development Environment (IDE) is performed using shared

memory.

Figure 3.2.5: HIP and GO positions are represented before and after a colli-

sion with the NURBS surface

The NURBS surface used in the simulation is represented in Figure 3.2.5

where the surface at the left hand side of the figure depicts the instant before

a collision with the surface and the right hand side demonstrates HIP in the

49

Figure 3.2.6: Trajectory of HIP on the NURBS surface. HIP is allowed to

move along the parameter v and its motion along the parameter u is kept

still.

surface and GO on the surface after a collision with the NURBS surface. The

NURBS surface is parameterized by u and v in two directions. A similar

trajectory as in Figure 3.2.1 is tracked by GO where the transitions from

stuck to slip and slip to stuck and then again stuck to slip are enforced.

The trajectory is represented in Figure 3.2.6 and is generated by keeping the

parameter u constant while changing the parameter v. Figure 3.2.7 shows

the normal and friction force graphs with respect to time. According to

the trajectory, at first instant HIP is located outside the surface where no

collision has been occurred yet and forces are calculated as zero. In the

interval 1 → 2, the normal force increases as HIP starts to penetrate into

the surface. The interval 2 → 3 demonstrates HIP’s movement parallel to

the surface where the normal force almost stays constant and friction force

arises due to the increase of the tangential force. At 3, the breakaway force

is overcome and the transition from stuck to slip occurs and friction force is

computed by modulating the static and dynamic coefficient of friction. Until

4, HIP continues its motion parallel to the surface. Then it penetrates deeper

50

into the surface along the surface normal where the normal and friction forces

increase due to the increase in the penetration depth. The motion of HIP

deeper into the surface normal enforces a change from the slip to stuck mode.

At 5, stuck mode is triggered and friction force remains constant due to

the zero tangential force and normal force continues to increase. In order

to overcome the breakaway force and enter the slipping mode again, HIP

moves in the tangential direction parallel to the surface until the rest of the

trajectory. The slipping mode is triggered at 7 and dynamic friction applies

where the 7 → 8 represents the smooth transition from static to dynamic

friction.

0 1000 2000 3000 4000 5000 6000 7000

 5

10

20

30

40
Friction Force
Response Force

1 2

64
5

8

3

7

Fo
rc

e
(N

)

Simulation Time

Figure 3.2.7: Plots representing the frictional and normal forces calculated

during the friction rendering of a NURBS surface

51

3.3 Real-time Implementation Results

The controllers are programmed in C and implemented in real-time at 1 kHz

utilizing a PC running the RTX real-time operating system. The PC-based

control architecture compromises of a workstation simultaneously running

RTX real-time operating system and Windows XP SP2. A 2-DoF Pantograph

mechanism is used as the haptic interface. The real-time tests are performed

with the virtual object depicted in Figure 3.2.1. The stiffness of the object

is set to be 1000 N/m.

The algorithm is tested to demonstrate the stick-slip friction behavior and

a sample test result is shown in Figure 3.3.1. At the beginning of the test,

the user/HIP is outside the virtual object and the friction force is zero. The

collision with the virtual object occurs at 6.625 sec.s and the stuck mode

is activated due to this collision. From this instant on, the friction force

increases as the user applies larger force to overcome the breakaway friction

force. The breakaway friction force is exceeded at 6.63 sec.s, and transition

from stuck to slip mode initiates. The smoothed transition is completed at

6.725 sec.s, after which the slip mode stays active throughout the simulation.

3.4 Results

Sections 3.2.1 and 3.2.2 demonstrate the results of friction rendering in 2- and

3-D, respectively. Both results are acquired using pre-determined trajectories

of HIP. These trajectories are created to validate the mode transitions of the

friction rendering algorithm. The results in Section 3.2.1 indicate that the

friction rendering algorithm handles transitions from stuck to slip and slip

to stuck successfully and without any force discontinuity. A special case

52

0

1

2

3

4

5

6

7

8

9

Sample Time

Fr
ic

tio
n

Fo
rc

e
[N

]

Co
e�

ci
en

t o
f F

ric
tio

n

6800678067606740672067006680666066406620

µ

Ff

stuck to slip transition slipstuck
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

Figure 3.3.1: Real-time implementation of the friction rendering algorithm

demonstrating an occurrence of the stuck to slip transition

of static friction is also rendered where the Voronoi-switching is canceled

if static friction applies during Voronoi-boundary crossings. Section 3.2.2

represents similar results of friction rendering in 3-D. And results in Section

3.3 verify the mode transitions of friction rendering algorithm in real-time.

53

Chapter 4

Conclusions and Future Work

4.1 Conclusions

This thesis focuses on the simulation and real-time implementation of haptic

and friction rendering of continuous parametric models while enhancing the

realism of haptic rendering. The haptic rendering algorithm used to compute

the force response resulting from the interaction between a user and a virtual

environment, is based on a feedback-stabilized control scheme. The controller

for the algorithm is designed and realized using Simulink and implemented in

real-time on a PC running the RTX real-time system. A significant property

of this haptic rendering algorithm is that it can treat continuous paramet-

ric models directly unlike most of the algorithms presented in the literature

which require a conversion of continuous models into intermediate represen-

tations. A friction rendering algorithm that can also work on continuous

parametric models, is presented to improve the haptic rendering approach.

The direct friction rendering method for continuous parametric models

implements the stiction model of friction, and can handle transitions from

stuck to slip and slip to stuck modes without introducing discontinuous force

artifacts. Our algorithm allows for tuning of the friction coefficient during

54

the mode transitions to simulate Stribeck effect. The approach is robust

against drift and numerical noise due to its feedback-stabilized core. More

importantly, the friction rendering algorithm is inherently stable and can

handle surfaces with high curvature. The approach is physically intuitive

and easy to implement. Simulation results are presented and the feasibility

of the approach is verified through real-time implementations.

4.2 Future Work

Future work includes human subject experiments and haptic deformation

using D-NURBS. Next section introduces the human subject experiments

that are performed to measure the effects of friction on shape perception and

summarizes the experimental procedures. The definition and preliminary

simulation results of D-NURBS are given in Section 4.4.

4.3 Human Subject Experiments

An experiment is designed in order to study the effects of friction on the

perception of different parametric shapes by human subjects. The parametric

models that are rendered to subjects, are created by joining two curves at a

vertex as seen in Figure 4.3.1. There are in total five different possibilities

of representation of the virtual object. As shown in Figure 4.3.1 the curves

that are used to generate the parametric models, are either convex or concave

or straight which are lines. The order of the virtual objects of different

shapes that are rendered to subjects are randomized but they are equally

represented in the experiment. Haptic rendering of models are carried out

with and without friction. During rendering of different parametric models

55

(a)

(d)

(c)(b)

(e) (f)

Figure 4.3.1: a) b) Virtual object formed by convex curves c) Virtual object

formed by straight lines d) Virtual object generated by concave curves e)

The parametric models in a), b), c) and d) are represented on top of each

other

subject can not see the rendered models on the monitor. They are expected

to feel the rendered geometry via the end effector of a 2-DoF Pantograph

without seeing the shape of the virtual object. The experiment consists of

several trials and in each trial a single model is rendered to the subject.

Following the completion of each trial, the subject is asked to select a model

from five different models that are displayed on the monitor. The aim of

the experiment is to check whether the subjects will be able to distinguish

between geometrically similar shapes with and without friction and how does

the existence of friction in haptic rendering contributes to the realism of

56

haptic rendering.

The human subjects are selected among right-handed people and during

the experiment they use their right hand to hold the end effector of the

Pantograph. They are restricted to see their hand using a black fabric. After

completing each trial subjects make a choice from different shapes but no

feedback is given to them regarding their choice. The experiments are being

continuing.

4.4 Deformation Modeling using Dynamic NURBS

The realism of haptic interaction with a virtual environment can be im-

proved with the help of friction and texture rendering. Haptic deformation

is another approach that can be used to increase this realism. With the

help of deformable objects, the user can gain more understanding of the vir-

tual environment he/she is interacting with. When the significance of haptic

deformation is taken into account, Dynamic NURBS (D-NURBS) [49], a gen-

eralization of the nonuniform rational B-Spline (NURBS) model, can be a

useful technique to model deformation in haptic rendering.

D-NURBS represents an approach for physics-based deformation model-

ing by incorporating mass distributions, energies and other physical quan-

tities into NURBS structure. Due to physics-based modeling of D-NURBS,

shape of NURBS models can be dynamically varied and manipulated with

respect to time under applied force. More control over dynamically varied

NURBS is possible by modifying the parameters related to mass, damping

and elasticity. The formulation and equations of motion of D-NURBS are

given in the next section.

57

4.4.1 Formulation of Dynamic NURBS

This section closely follows [49] and provides information regarding D-NURBS

geometry.

The definition of a NURBS curve that combines a set of piecewise rational

functions with n + 1 control points and weights is given in the following.

Please note that the basis functions are denoted by B which are represented

with N in section 2.1.1.

C(u) =

∑n
i=0 Bi,k(u)wiPi∑n
i=0Bi,k(u)wi

(4.1)

where u parameterizes the curve between the values 0 an 1, unless otherwise

stated. A NURBS curve has n+ k + 1 knots ti when the basis functions are

of degree k − 1 that are defined as

Bi,1(u) =

1 if ti ≤ u < ti+1

0 otherwise

Bi,k =
u− ti

ti+k−1 − ti
Bi,k−1(u) +

ti+k − u
ti+k − ti+1

Bi+1,k−1(u)

Now defining a NURBS curve as a function of the parameter u and time t

provides the formulation of a D-NURBS curve as follows

c(u, t) =

∑n
i=0 Bi,k(u)wipi∑n
i=0 Bi,k(u)wi

(4.2)

where pi(t) the control points and weights wi(t) become functions of time

and are generalized coordinates of D-NURBS. For an easy and compact rep-

resentation of generalized coordinates of D-NURBS the following vectors are

defined:

58

pb(t) = [pT0 , ..., p
T
n]T ,

pw(t) = [w0, ..., wn]T ,

p(t) = [pT0w0....p
T
nwn]T

Following the compact representation of generalized coordinates of a D-

NURBS curve, the formulation of a Jacobian matrix that maintains a re-

lationship between the generalized coordinates of the D-NURBS curve and

an evaluated points on the curve at an instant, is given in the equations be-

low. For the derivation of equation (4.3), please refer to [49]. The contents

of the Jacobian matrix are formed by letting a 3x3 matrix whose diagonal

entries are the rational basis functions

Ni(u, p) =
∂c

∂pi
=

wiBi,k∑n
j=0wjBj,k

and letting the 3x1 vector

wi(u, p) =
∂c

∂wi
=

∑n
j=0(pi − pj)wjBi,kBj,k

(
∑n

j=0 wjBj,k)2
.

For i = 0, ..., n collecting Bi into B and wi into W yields

B(u, p) = [B0...Bn],

B(u, p) = [w0...wn],

J(u, p) = [B0w0... Bnwn].

Now the D-NURBS curve can be expressed as the product of the generalized

coordinate vector and the Jacobian matrix.

c(u, p) = Jp (4.3)

The equations of motion of D-NURBS are formed using Lagrangian dynam-

ics. When the control points and imaginary straight lines connecting each

59

pair of them are considered, a D-NURBS geometry can be interpreted as a

planar mechanism. In this regard, the control points and straight lines cor-

respond to joints and links, respectively. Letting fi the applied force acting

on the generalized coordinated pi, T the kinetic energy, U the potential en-

ergy and F the dissipation energy the Lagrangian equations of motion can

be developed as

d

dt

∂T

∂ṗi
− d

dt

∂T

∂pi
+
∂F

∂ṗi
+
∂U

∂pi
= fi (4.4)

By applying (4.4) equations of motion of D-NURBS are given by

Mp̈+Dṗ+Kp = fp − Iṗ (4.5)

The mass matrix is defined as

M(p) =

∫
µJTJdu (4.6)

where µ(u) is the mass density function defined over the parametric domain

of the curve. The damping density function is denoted by γ(u) and the

density matrix is given as following

D(p) =

∫
γJTJdu (4.7)

The α(u) and β(u) are defined as the elasticity functions which aim to control

local tension and rigidity. The stiffnes matrix is given by

K(p) =

∫
α1J

T
u Ju + βJTuuJuudu (4.8)

Finally, the generalized force vector and the inertia matrix are found by

fp(p) =

∫
JTf(u, t)du,

I(p) = µJT J̇du

(4.9)

60

4.4.2 Simulation Results

Figures 4.4.1(a)-(d) depict deformation of a B-spline under applied force.

The figures show both deformed and undeformed shapes of the B-spline.

The B-spline before deformation is colored in blue and formed using four

control points which are illustrated as four blue circles. In each of the figures

the force is applied along the straight green line at its point of contact with

the curve. In the figures, the exact force application points on the curve are

u = 0.5, u = 0, u = 0 and u = 1, respectively. The dashed lines represent the

deformed B-spline after the applied force and red circles show newly located

control points of the curve after deformation.

The coordinates of the control points under force application are calcu-

lated by solving the equation of motion for Dynamic NURBS given in Section

4.4.1. The integration of dynamical differential equations is carried out us-

ing Gaussian quadrature, which is used to approximate the definite integral

of an arbitrary function. The results shown in the figures indicate that the

B-spline is deformed towards the direction of the applied force which is phys-

ically meaningful. The obtained deformation can be rendered more realisti-

cally by adding more control points to the B-spline and defining constraints

on chosen control points.

61

30 40 50 60 70 80 90 100 110
30

40

50

60

70

80

90

100

110

120

20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

110

120

130

20 30 40 50 60 70 80 90 100 110
30

40

50

60

70

80

90

100

110

120

130

30 40 50 60 70 80 90 100 110
20

40

60

80

100

120

140

(a) (b)

(c) (d)

Figure 4.4.1: Deformation of a B-Spline under force application. The dashed

B-Splines represent the deformed objects. The B-Splines are parameterized

between u = 0 and u = 1. The force is applied to the B-Splines at u = 0.5,

u = 0, u = 0 and u = 1, respectively.

62

Bibliography

[1] Volkan Patoğlu. Guaranteed Stability for Collision Detection and Simu-

lation of Hybrid Dynamical Systems. PhD thesis, University of Michigan,

2005.

[2] John M. Hollerbach and David E. Johnson. Virtual environment ren-

dering. In in Human and Machine Haptics. MIT Press, 2000.

[3] J.E. Colgate, M.C. Stanley, and J.M. Brown. Issues in the haptic dis-

play of tool use. In Intelligent Robots and Systems 95. ’Human Robot

Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ In-

ternational Conference on, volume 3, pages 140 –145 vol.3, 5-9 1995.

[4] R.J. Adams and B. Hannaford. Stable haptic interaction with virtual

environments. Robotics and Automation, IEEE Transactions on, 15(3):

465 –474, jun 1999. ISSN 1042-296X.

[5] Ming C. Lin, Miguel Otaduy, Ming C. Lin, and Miguel Otaduy. Haptic

Rendering: Foundations, Algorithms and Applications. A. K. Peters,

Ltd., Natick, MA, USA, 2008. ISBN 1568813325, 9781568813325.

[6] J.E. Colgate and G. Schenkel. Passivity of a class of sampled-data sys-

63

tems: application to haptic interfaces. In American Control Conference,

1994, volume 3, pages 3236 – 3240 vol.3, 29 1994.

[7] T.M. Massie and J.K. Salisbury. The phantom haptic interface: a device

for probling virtual objects. Proc. ASME Dynamic Systems and Control

Division, pages 295–301, 1994.

[8] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. Fast procedure for

computing the distance between convex objects in three-dimensional

space. IEEE Journal of Robotics and Automation, 4(2):193–203, 1988.

[9] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance

calculation. In IEEE International Conference on Robotics and Automa-

tion, volume 2, pages 1008–1014, 1991.

[10] B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. ACM

Transactions on Graphics, 17(3):177–208, 1998.

[11] C.B. Zilles and J.K. Salisbury. A constraint-based god-object method

for haptic display. In Intelligent Robots and Systems 95. ’Human Robot

Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ In-

ternational Conference on, volume 3, pages 146–151 vol.3, Aug 1995.

[12] Srinivasan M.A. Morgenbesser H.B. Force shading for haptic shape

perception. Proceedings of the ASME Dynamics Systems and Control

Division, 58:407–412, 1996.

[13] Diego C. Ruspini, Krasimir Kolarov, and Oussama Khatib. The hap-

tic display of complex graphical environments. In Computer Graphics

Proceedings, Annual Conference Series, SIGGRAPH 97, Los Angeles,

California,, pages 345–352, Aug 1997.

64

[14] J. M. Snyder. Interactive tool for placing curved surfaces without inter-

penetration. In Proceedings of the ACM SIGGRAPH, pages 209–218,

1995.

[15] Y. Adachi, T. Kumano, and K. Ogino. Intermediate representation for

stiff virtual objects. In Proceedings Virtual Reality Annual International

Symposium, pages 203–210, 1995.

[16] P. Stewart, Y. Chen, and P. Buttolo. CAD data representations for

haptic virtual prototyping. In Proceedings of ASME Design Engineering

Technical Conference, 1997.

[17] T. V. Thompson II, D. D. Nelson, E. Cohen, and J. Hollerbach. Maneu-

verable NURBS models within a haptic virtual environment. In Pro-

ceedings of ASME International Mechanical Engineering Congress and

Exposition, volume 61, pages 37–44, 1997.

[18] D. D. Nelson, D. E. Johnson, and E. Cohen. Haptic rendering of surface-

to-surface sculpted model interaction. In Proceedings ASME Dynamic

Systems and Control Division, volume 67, pages 101–108, 1999.

[19] V. Patoglu and R. B. Gillespie. Extremal distance maintenance for

parametric curves and surfaces. In Proc. 2002 IEEE International Con-

ference on Robotics and Automation, pages 2817–2823, 2002.

[20] V. Patoglu and R. B. Gillespie. Haptic rendering of parametric surfaces

using a feedback stabilized extremal distance tracking algorithm. In

Proc. IEEE International Conference on Haptic Interfaces for Virtual

Environment and Teleoperator Systems, volume 3, pages 391 – 399, 2004.

65

[21] V. Patoglu and R. B. Gillespie. Feedback stabilized minimum distance

maintenance for convex parametric surfaces. IEEE Transactions on

Robotics, 21(5):1009– 1016, 2005.

[22] Brian Mirtich. V-clip: Fast and robust polyhedral collision detection.

ACM Transactions on Graphics, 17:177–208, 1998.

[23] S.A. Ehmann and M.C. Lin. Accelerated proximity queries between

convex polyhedra by multi-level voronoi marching. In Intelligent Robots

and Systems, 2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ Inter-

national Conference on, volume 3, pages 2101 –2106 vol.3, 2000.

[24] Ming C. Lin and Dinesh Manocha. Efficient contact determination be-

tween geometric models. Technical report, International Journal of Com-

putational Geometry and Applications.

[25] Tom Duff. Interval arithmetic recursive subdivision for implicit functions

and constructive solid geometry. In SIGGRAPH ’92: Proceedings of the

19th annual conference on Computer graphics and interactive techniques,

pages 131–138, New York, NY, USA, 1992. ACM. ISBN 0-89791-479-1.

[26] Brian Von Herzen, Alan H. Barr, and Harold R. Zatz. Geometric col-

lisions for time-dependent parametric surfaces. SIGGRAPH Comput.

Graph., 24(4):39–48, 1990. ISSN 0097-8930.

[27] Thomas V. Thompson, II, David E. Johnson, and Elaine Cohen. Direct

haptic rendering of sculptured models. In I3D ’97: Proceedings of the

1997 symposium on Interactive 3D graphics, pages 167–176, New York,

NY, USA, 1997. ACM. ISBN 0-89791-884-3.

66

[28] David E. Johnson and Elaine Cohen. An improved method for haptic

tracing of a sculptured surface, 1998.

[29] C. Richard and M.R. Cutkosky. Friction modeling and display in haptic

applications involving user performance. In Robotics and Automation,

2002. Proceedings. ICRA ’02. IEEE International Conference on, vol-

ume 1, pages 605 – 611 vol.1, 2002.

[30] R. Stribeck. Die wesentlichen eigenschaften der gleit- und rollenlager

the key qualities of sliding and roller bearings. Zeitschrift des Vereines

Seutscher Ingenieure, 46:1342–1348, 1902.

[31] Dean Karnopp. Computer simulation of stick-slip friction in mechani-

cal dynamic systems. Journal of Dynamic Systems, Measurement, and

Control, 107(1):100–103, 1985.

[32] H. Olsson, K. J. strm, C. Canudas de Wit, M. Gfvert, and P. Lischinsky.

Friction models and friction compensation. Europian Journal of Control,

4(3):176–195, 1998.

[33] P. R. Dahl. A solid friction model. Number TOR-158(3107-18), 1968.

[34] David A. Haessig and Bernard Friedland. On the modeling and simula-

tion of friction. In American Control Conference, 1990, pages 1256–1261,

May 1990.

[35] C. Canudas de Wit, H. Olsson, K.J. Astrom, and P. Lischinsky. A new

model for control of systems with friction. Automatic Control, IEEE

Transactions on, 40(3):419 –425, March 1995. ISSN 0018-9286.

67

[36] P.-A. Bliman and M. Sorine. Friction modelling by hysteresis operators.

application to dahl, stiction and stribeck effects. In Proceedings of the

Conference Models of Hysteresis,Trento,Italy, 1991.

[37] P.-A. Bliman and M. Sorine. A system-theoretic approach of systems

with hysteresis. application to friction modelling and compensation. In

Proceedings of the second European Control Conference, Groningen, The

Netherlands, pages 1844–49, 1993.

[38] P.-A. Bliman and M. Sorine. Easy-to-use realistic dry friction models for

automatic control. In Proceedings of 3rd European Control Conference,

Rome, Italy, pages 3788–3794, 1995.

[39] Laehyun Kim, A. Kyrikou, G.S. Sukhatme, and M. Desbrun. An

implicit-based haptic rendering technique. In Intelligent Robots and Sys-

tems, 2002. IEEE/RSJ International Conference on, volume 3, pages

2943–2948 vol.3, 2002.

[40] W.R. Mark, S.C Randolf, M. Finch, J.M. Van Verth, and R.M. Tay-

lor III. Adding force feedback to graphics systems:issues and solu-

tions. Association for Computing Machinery SIGGRAPH, New York,

NY, ETATS-UNIS, pages 447–452, 1996. ISSN 1069-529X.

[41] S. E. Salcudean and T. D. Vlaar. On the emulation of stiff walls and

static friction with a magnetically levitated input/output device. Jour-

nal of Dynamic Systems, Measurement and Control, 119(1):127–132,

March 1997. ISSN 0022-0434.

[42] K. Salisbury, D. Brocki, T. Massiet, N. Swarupf, and C. Zillest. Haptic

68

rendering: Programming touch interaction with virtual objects. Sympo-

sium on Interactive 3D Graphics, Monterey CA USA, 1995.

[43] N. Melder and W.S. Harwin. Extending the friction cone algorithm

for arbitrary polygon based haptic objects. In Haptic Interfaces for

Virtual Environment and Teleoperator Systems, 2004. HAPTICS ’04.

Proceedings. 12th International Symposium on, pages 234–241, March

2004.

[44] J. Chen, C. DiMattia, R. M. Taylor II, M. Falvo, P. Thiansathon, and

R. Superfine. Sticking to the point: A friction and adhesion model for

simulated surfaces. volume 61, pages 167–171, 1997.

[45] Vincent Hayward and Brian Armstrong. A new computational model

of friction applied to haptic rendering. In In Experimental Robotics

VI, P. I. Corke and J. Trevelyan (Eds.), Lecture Notes in Control and

Information Sciences, pages 403–412. Springer-Verlag, 2000.

[46] Les Piegl and Wayne Tiller. The NURBS book (2nd ed.). Springer-Verlag

New York, Inc., New York, NY, USA, 1997. ISBN 3-540-61545-8.

[47] K. Salisbury and Tarr C. Haptic rendering of surfaces defined by implicit

functions. In Proceedings on ASME 6th Annual Symposium on Haptic

Interfaces for Virtual Environment and Teleoperator Systems, Dallas,

TX, volume 3, pages 61–68, Nov 1997.

[48] Sisl homepage - sintef. URL http://www.sintef.no/Informasjons--og

-kommunikasjonsteknologi-IKT/Anvendt-matematikk/Fagomrader/

Geometri/Prosjekter/The-SISL-Nurbs-Library/SISL-Homepage/.

69

[49] Hong Qin and D. Terzopoulos. D-nurbs: a physics-based framework for

geometric design. Visualization and Computer Graphics, IEEE Trans-

actions on, 2(1):85 –96, mar 1996. ISSN 1077-2626.

70

