Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training

Gupta, Abhishek and O'Malley, Marcia K. and Patoğlu, Volkan and Burgar, Charles (2008) Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training. International Journal of Robotics Research, 27 (2). pp. 233-251. ISSN 0278-3649 (Print) 1741-3176 (Online)

This is the latest version of this item.

Full text not available from this repository. (Request a copy)

Abstract

This paper presents the design, control, and performance of a high fidelity four degree-of-freedom wrist exoskeleton robot, RiceWrist, for training and rehabilitation. The RiceWrist is intended to provide kinesthetic feedback during the training of motor skills or rehabilitation of reaching movements. Motivation for such applications is based on findings that show robot-assisted physical therapy aids in the rehabilitation process following neurological injuries. The exoskeleton device accommodates forearm supination and pronation, wrist flexion and extension, and radial and ulnar deviation in a compact parallel mechanism design with low friction, zero backlash, and high stiffness. As compared to other exoskeleton devices, the RiceWrist allows easy measurement of human joint angles and independent kinesthetic feedback to individual human joints. In this paper, joint-space as well as task-space position controllers and an impedance-based force controller for the device are presented. The kinematic performance of the device is characterized in terms of its workspace, singularities, manipulability, backlash, and backdrivability. The dynamic performance of RiceWrist is characterized in terms of motor torque output, joint friction, step responses, behavior under closed loop set-point and trajectory tracking control, and display of virtual walls. The device is singularity-free, encompasses most of the natural workspace of the human joints, and exhibits low friction, zero-backlash, and high manipulability, which are kinematic properties that characterize a high-quality impedance display device. In addition, the device displays fast, accurate response under position control that matches human actuation bandwidth, and the capability to display sufficiently hard contact with little coupling between controlled degrees-of-freedom.
Item Type: Article
Uncontrolled Keywords: rehabilitation robotics • medical robots and systems • mechanism design • haptics and haptic interfaces • physical human-robot interaction
Divisions: Faculty of Engineering and Natural Sciences
Depositing User: Volkan Patoğlu
Date Deposited: 08 Oct 2008 00:10
Last Modified: 25 May 2011 14:03
URI: https://research.sabanciuniv.edu/id/eprint/9241

Available Versions of this Item

Actions (login required)

View Item
View Item