Özden, Şafak (2006) Basic theory of n-local fields. [Thesis]
PDF
ozdensafak.pdf
Download (468kB)
ozdensafak.pdf
Download (468kB)
Abstract
n-local fields arise naturally in the arithmetic study of algebro-geometric objects. For example, let X be a scheme which is integral and of absolute dimension n. Let F be the field of rational functions on X. Then to any complete flag of irreducible subschemes XQ C XI C C Xn_i C Xn = X, with dim(Xj) = i for i = 0, . . . , n, there corresponds a completion F(X0,..., Xn) of the field F introduced by Parshin, which is an example of an n-local field, in case each Xi is non-singular for i = 0, . . . , n. This n-local field F(X0, , Xn) plays a central role in the class field theory of X, introduced by Parshin and Kato. In this thesis, we develop the basic theory of n-local fields, including a complete elementary proof of Parshin's classification theorem; and for an n-local field K, introduce the sequential topology on K+ and Kx, and study the Kato-Zhukov higher ramification theory, including the Hasse-Arf theorem, for K.
Item Type: | Thesis |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Engineering and Natural Sciences > Basic Sciences > Mathematics Faculty of Engineering and Natural Sciences |
Depositing User: | IC-Cataloging |
Date Deposited: | 14 Apr 2008 15:58 |
Last Modified: | 26 Apr 2022 09:47 |
URI: | https://research.sabanciuniv.edu/id/eprint/8383 |