Sezer, Osman Gökhan (2005) Supersolution techniques for face recognition from video /. [Thesis]
PDF
sezerog.pdf
Download (1MB)
sezerog.pdf
Download (1MB)
Abstract
Performance of current face recognition algorithms reduces significantly when they are applied to low-resolution face images. To handle this problem, superresolution techniques can be applied either in the pixel domain or in the face subspace. Since face images are high dimensional data which are mostly redundant for the face recognition task, feature extraction methods that reduce the dimension of the data are becoming standard for face analysis. Hence, applying super-resolution in this feature domain, in other words in face subspace, rather than in pixel domain, brings many advantages in computation together with robustness against noise and motion estimation errors. Therefore, we propose new super-resolution algorithms using Bayesian estimation and projection onto convex sets methods in feature domain and present a comparative analysis of the proposed algorithms and those already in the literature.
Item Type: | Thesis |
---|---|
Uncontrolled Keywords: | Independent component analysis -- Principal components analysis -- Video -- Face recognition |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Faculty of Engineering and Natural Sciences > Academic programs > Computer Science & Eng. Faculty of Engineering and Natural Sciences |
Depositing User: | IC-Cataloging |
Date Deposited: | 15 Apr 2008 13:52 |
Last Modified: | 26 Apr 2022 09:45 |
URI: | https://research.sabanciuniv.edu/id/eprint/8279 |