İnan, Ali and Kaya, Selim Volkan and Saygın, Yücel and Savaş, Erkay and Azgın Hintoğlu, Ayça and Levi, Albert (2007) Privacy preserving clustering on horizontally partitioned data. Data & Knowledge Engineering, 63 (3). pp. 646-666. ISSN 0169023X
Full text not available from this repository. (Request a copy)
Official URL: http://dx.doi.org/10.1016/j.datak.2007.03.015
Abstract
Data mining has been a popular research area for more than a decade due to its vast spectrum of applications. However, the popularity and wide availability of data mining tools also raised concerns about the privacy of individuals. The
aim of privacy preserving data mining researchers is to develop data mining techniques that could be applied on databases without violating the privacy of individuals. Privacy preserving techniques for various data mining models have been proposed, initially for classification on centralized data then for association rules in distributed environments. In this work, we
propose methods for constructing the dissimilarity matrix of objects from different sites in a privacy preserving manner which can be used for privacy preserving clustering as well as database joins, record linkage and other operations that require pair-wise comparison of individual private data objects horizontally distributed to multiple sites. We show communication and computation complexity of our protocol by conducting experiments over synthetically generated and real datasets. Each experiment is also performed for a baseline protocol, which has no privacy concern to show that the overhead
comes with security and privacy by comparing the baseline protocol and our protocol.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Privacy; Data mining; Distributed clustering; Security |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Faculty of Engineering and Natural Sciences |
Depositing User: | Albert Levi |
Date Deposited: | 10 Oct 2007 20:34 |
Last Modified: | 25 May 2011 14:05 |
URI: | https://research.sabanciuniv.edu/id/eprint/5564 |