Alkan, Atakan and Ranjbar Aghjehkohal, Amin and Fallah, Ali and Koç, Bahattin (2025) 4D-printed continuous fiber-reinforced PLA/TPU auxetic composites: mechanical performance, energy absorption, shape recovery, and reusability evaluation. Progress in Additive Manufacturing . ISSN 2363-9512 (Print) 2363-9520 (Online) Published Online First https://dx.doi.org/10.1007/s40964-025-01359-z
Full text not available from this repository. (Request a copy)
Official URL: https://dx.doi.org/10.1007/s40964-025-01359-z
Abstract
This study explores the mechanical performance, energy absorption, shape recovery, and reusability of 4D-printed continuous carbon fiber-reinforced auxetic composite structures based on PLA/TPU blends, designed for load-bearing applications. PLA–TPU mixtures with different TPU content were developed to optimize the balance between flexibility and strength, with carbon fibers incorporated to enhance the mechanical properties of the resulting composites. Thermo-mechanical characterization of the blends was conducted, followed by a detailed evaluation of the structures’ mechanical behavior and energy absorption capacity under room temperature conditions, simulating practical industrial scenarios. The shape recovery performance of these composite structures was also investigated. To assess reusability, the programming–recovery cycle was repeated five times, analyzing the retention of mechanical properties and shape recovery over multiple cycles to determine durability. Results revealed that TPU integration provided sufficient flexibility for cold programming, while carbon fiber reinforcement significantly enhanced stiffness and strength. The 4D-printed composites exhibited consistent shape recovery and maintained mechanical integrity after five cycles, confirming their reusability. These findings demonstrate the potential of 4D-printed PLA/TPU-based carbon fiber-reinforced composites as smart, durable materials for load-bearing applications in industries such as biomedical engineering, automotive, and aerospace.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | 4D printing; Energy absorption; Shape memory polymers; Smart composite structures |
| Divisions: | Integrated Manufacturing Technologies Research and Application Center |
| Depositing User: | Ali Fallah |
| Date Deposited: | 22 Dec 2025 15:01 |
| Last Modified: | 22 Dec 2025 15:01 |
| URI: | https://research.sabanciuniv.edu/id/eprint/52907 |


