Okumuşoğlu, Bahar Cennet and Basciftci, Beste and Kocuk, Burak (2024) An integrated predictive maintenance and operations scheduling framework for power systems under failure uncertainty. Informs Journal on Computing . ISSN 1091-9856 (Print) 1526-5528 (Online) Published Online First http://dx.doi.org/10.1287/ijoc.2022.0154
PDF
2024_ an-integrated-predictive-maintenance-and-operations-scheduling-framework-for-power-systems-under.pdf
Restricted to Registered users only
Download (3MB) | Request a copy
2024_ an-integrated-predictive-maintenance-and-operations-scheduling-framework-for-power-systems-under.pdf
Restricted to Registered users only
Download (3MB) | Request a copy
Official URL: http://dx.doi.org/10.1287/ijoc.2022.0154
Abstract
Maintenance planning plays a key role in power system operations under uncertainty as it helps providers and operators ensure a reliable and secure power grid. This paper studies a short-term condition -based integrated maintenance planning with operations scheduling problem while considering the possible unexpected failure of generators as well as transmission lines. We formulate this problem as a two -stage stochastic mixedinteger program with failure scenarios sampled from the sensor -driven remaining lifetime distributions of the individual system elements whereas a joint chance constraint consisting of Poisson Binomial random variables is introduced to account for failure risks. Because of its intractability, we develop a cutting -plane method to obtain an exact reformulation of the joint chance constraint by proposing a separation subroutine and deriving stronger cuts as part of this procedure. We also derive a second -order cone programming -based safe approximation of this constraint to solve large-scale instances. Furthermore, we propose a decomposition algorithm implemented in parallel fashion for solving the resulting stochastic program, which exploits the features of the integer L-shaped method and the special structure of the maintenance and operations scheduling problem to derive valid and stronger sets of optimality cuts. We further present preprocessing steps over transmission line flow constraints to identify redundancies. To illustrate the computational performance and efficiency of our algorithm compared with more conventional maintenance approaches, we design a computational study focusing on a weekly plan with daily maintenance and hourly operational decisions involving detailed unit commitment subproblems. Our computational results on various IEEE instances demonstrate the computational efficiency of the proposed approach with reliable and cost-effective maintenance and operational schedules.
Item Type: | Article |
---|---|
Divisions: | Faculty of Engineering and Natural Sciences > Academic programs > Industrial Engineering Faculty of Engineering and Natural Sciences |
Depositing User: | Burak Kocuk |
Date Deposited: | 17 Sep 2024 12:01 |
Last Modified: | 17 Sep 2024 12:01 |
URI: | https://research.sabanciuniv.edu/id/eprint/49938 |