Developing multifunctional pectin-based hydrogel for wound dressing: in silico, in vitro and in vivo evaluation

Kocaağa, Banu and Öztürk, Yetkin and Ceren Kurçin, H. and Güner-Yılmaz, Zeynep and Kurkcuoglu, Ozge and Tatlier, Melkon and Özdemir, İlkay and Kervancioglu Demirci, Elif and Kotil, Tuğba and Solakoğlu, Seyhun and Aksu, Burak and Batirel, Saime and Bal-Öztürk, Ayça and Güner, F. Seniha (2024) Developing multifunctional pectin-based hydrogel for wound dressing: in silico, in vitro and in vivo evaluation. European Polymer Journal, 216 . ISSN 0014-3057 (Print) 1873-1945 (Online)

Full text not available from this repository. (Request a copy)

Abstract

Multifunctional hydrogel wound dressing with high hemostatic, antioxidant, and self-healing activity is desirable in clinical applications. In this contribution, we developed two distinct hydrogel formulations, namely PZ and PTBA, by employing low methoxyl pectin (P), zeolite, or 2-thiobarbituric acid (TBA) for sustained release of procaine (PC) in a controlled manner up to 40 h. These hydrogel systems (PZ and PTBA) utilize dynamic reversible hydrogen bonds between the components and a metal coordination bond between carboxyl acid groups of pectin chains and Ca2+ to confer self-healing properties, as demonstrated by molecular dynamics (MD) and rheological analyses. Moreover, PZ and PTBA hydrogels possess superior antioxidant, hemostasis, biocompatibility, and antibacterial activities. The data from the mouse skin incision model and infected full-thickness skin wound model demonstrated the highest wound closure rate (wound closure area per day) was achieved by the PZ (4.72) and PTBA (4.62) groups on day 21, which was better than the control (4.2) and Kaltostat groups (4.05) (p < 0.05). PZ and PTBA's effectiveness in wound closure and acceleration of the wound healing process, highlighting its significant potential in wound management.
Item Type: Article
Uncontrolled Keywords: Molecular dynamics; Pectin; Wound healing; Zeolite
Divisions: Sabancı University Nanotechnology Research and Application Center
Depositing User: IC-Cataloging
Date Deposited: 08 Aug 2024 14:47
Last Modified: 08 Aug 2024 14:47
URI: https://research.sabanciuniv.edu/id/eprint/49590

Actions (login required)

View Item
View Item