A new construction of asymptotically optimal almost affinely disjoint spaces

Warning The system is temporarily closed to updates for reporting purpose.

Arikan, Talha and Düzgün, Baran and Otal, Kamil and Özbudak, Ferruh (2023) A new construction of asymptotically optimal almost affinely disjoint spaces. In: IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwan

Full text not available from this repository. (Request a copy)

Abstract

Let Fq denote the finite field of size q and Fqn denote the set of n-tuples of elements from Fq. A family of k-dimensional subspaces of Fqn, which forms a partial spread, is called L-almost affinely disjoint (or briefly [n,k,L]q-AAD) if each affine coset of a member of this family intersects with only at most L subspaces from the family.Polyanskii and Vorobyev introduced almost affinely disjoint (AAD) subspace families for n = 2k + 1 in [IEEE ISIT 2019 pp. 360-364] using a different language (by saying "L-nice"instead of "[n,k,L]q-AAD") in order to construct some types of primitive batch codes. For this purpose, they made use of Reed-Solomon codes and hence they presented [n = 2k + 1,k,L = k]-AAD subspace families of size ? q/k ?. The general notion of almost affinely disjoint (AAD) subspace families was later introduced and connections with some problems in coding theory were presented by Liu et al. in [Finite Fields Their Appl. 75 (2021) 101879]. In particular, the authors gave upper and lower bounds for the size of AAD subspace families and provided asymptotically optimal constructions of such families for k = 1 and k = 2 when L is sufficiently large, where the polynomial growth in q is n - 2k.Later on, Otal and Arikan [Finite Fields Their Appl. 84 (2022) 102099] gave some constructions of large AAD subspace families for n = 3k, hence improved the lower bound of Liu et al. and presented asymptotically optimal AAD subspace families for n = 3k when L = 1.In this paper, we give a construction of large AAD subspace families of size q for n = 2k + 1. We also prove that our construction is asymptotically optimal for k = 2 and k = 3, and conjecture that our construction is still asymptotically optimal for the remaining cases k > 3, where L = k. Our construction is basically a generalization of a special case of the construction of Otal and Arikan. We highlight that our construction improves the lower bound given by Polyanskii and Vorobyev to q from ? q/k ?. Also we express that our method makes use of linear algebraic techniques rather than Reed-Solomon codes and finite geometry.
Item Type: Papers in Conference Proceedings
Divisions: Faculty of Engineering and Natural Sciences
Depositing User: Ferruh Özbudak
Date Deposited: 04 Oct 2023 10:03
Last Modified: 04 Oct 2023 10:03
URI: https://research.sabanciuniv.edu/id/eprint/48552

Actions (login required)

View Item
View Item