Erdil, Ertunç and Ozgurargunsah, A. and Tasdizen, Tolga and Unay, Devrim and Çetin, Müjdat (2019) Combining nonparametric spatial context priors with nonparametric shape priors for dendritic spine segmentation in 2-photon microscopy images. In: IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy
Full text not available from this repository. (Request a copy)
Official URL: https://dx.doi.org/10.1109/ISBI.2019.8759273
Abstract
Data driven segmentation is an important initial step of shape prior-based segmentation methods since it is assumed that the data term brings a curve to a plausible level so that shape and data terms can then work together to produce better segmentations. When purely data driven segmentation produces poor results, the final segmentation is generally affected adversely. One challenge faced by many existing data terms is due to the fact that they consider only pixel intensities to decide whether to assign a pixel to the foreground or to the background region. When the distributions of the foreground and back-ground pixel intensities have significant overlap, such data terms become ineffective, as they produce uncertain results for many pixels in a test image. In such cases, using prior information about the spatial context of the object to be segmented together with the data term can bring a curve to a plausible stage, which would then serve as a good initial point to launch shape-based segmentation. In this paper, we propose a new segmentation approach that combines nonparametric context priors with a learned-intensity-based data term and nonparametric shape priors. We perform experiments for dendritic spine segmentation in both 2 D and 3 D 2-photon microscopy images. The experimental results demonstrate that using spatial context priors leads to significant improvements.
Item Type: | Papers in Conference Proceedings |
---|---|
Uncontrolled Keywords: | 2-photon microscopy; Nonparametric shape priors; Spatial context priors; Spine segmentation |
Divisions: | Faculty of Engineering and Natural Sciences |
Depositing User: | Müjdat Çetin |
Date Deposited: | 27 Jul 2023 22:12 |
Last Modified: | 27 Jul 2023 22:12 |
URI: | https://research.sabanciuniv.edu/id/eprint/46344 |