Identification of epilepsy related pathways using genome-wide DNA methylation measures: a trio-based approach

Ozdemir, Ozkan and Egemen, Ece and Iseri, Sibel Aylin Ugur and Sezerman, Osman Ugur and Bebek, Nerses and Baykan, Betul and Ozbek, Ugur (2019) Identification of epilepsy related pathways using genome-wide DNA methylation measures: a trio-based approach. PLoS ONE, 14 (2). ISSN 1932-6203

Full text not available from this repository. (Request a copy)

Abstract

Genetic generalized epilepsies (GGE) are genetically determined, as their name implies and they are clinically characterized by generalized seizures involving both sides of the brain in the absence of detectable brain lesions or other known causes. GGEs are yet complex and are influenced by many different genetic and environmental factors. Methylation specific epigenetic marks are one of the players of the complex epileptogenesis scenario leading to GGE. In this study, we have set out to perform genome-wide methylation profiling to analyze GGE trios each consisting of an affected parent-offspring couple along with an unaffected parent. We have developed a novel scoring scheme within trios to categorize each locus analyzed as hypo or hypermethylated. This stringent approach classified differentially methylated genes in each trio and helped us to produce trio specific and pooled gene lists with inherited and aberrant methylation levels. In order to analyze the methylation differences from a boarder perspective, we performed enrichment analysis with these lists using the PANOGA software. This collective effort has led us to detect pathways associated with the GGE phenotype, including the neurotrophin signaling pathway. We have demonstrated a trio based approach to genome-wide DNA methylation analysis that identified individual and possibly minor changes in methylation marks that could be involved in epileptogenesis leading to GGE.
Item Type: Article
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Computer Science & Eng.
Faculty of Engineering and Natural Sciences
Depositing User: Ece Egemen
Date Deposited: 10 Jun 2023 14:57
Last Modified: 10 Jun 2023 14:57
URI: https://research.sabanciuniv.edu/id/eprint/45988

Actions (login required)

View Item
View Item