Li, Chao and Minati, Ludovico and Tokgöz, Korkut Kaan and Fukawa, Masamoto and Bartels, Jim and Sihan, A. and Takeda, Ken Ichi and Ito, Hiroyuki (2022) Integrated data augmentation for accelerometer time series in behavior recognition: roles of sampling, balancing, and fourier surrogates. IEEE Sensors Journal, 22 (24). pp. 24230-24241. ISSN 1530-437X (Print) 1558-1748 (Online)
Full text not available from this repository. (Request a copy)
Official URL: https://dx.doi.org/10.1109/JSEN.2022.3219594
Abstract
The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in which it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of the Internet of Things: limited dataset size and dataset imbalance. Recently, data augmentation has emerged as a way of addressing their negative influences on the training process without overburdening the data acquisition phase. However, there remains no consensus regarding which methods should be applied to time series and in what combination. Here, we present the first comprehensive analysis that synergistically combines multiple approaches. These approaches are benchmarked on a dataset of triaxial accelerometer time series, which were acquired from six freely roaming cows through a collar-mounted sensor and labeled by experienced human observers according to five behaviors. Our results indicate that integrating data augmentation with the training process can substantially improve the time-series classification performance while retaining a fixed convolutional neural network architecture. The improvement is maximized when the dataset is balanced by applying a suitable sampling scheme and the negative influence of data duplication is reduced via generating synthetic time series with Fourier surrogates. With the proposed approach, the overall accuracy is improved from 90% to 96%, and the classification accuracy of an under-represented behavior, namely, grazing, is elevated from 45% to 91%. This work provides a direction toward a general methodology, motivating research on other datasets and applications.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Accelerometer; animal behavior; data augmentation; Fourier surrogates; imbalanced dataset; sensor data processing; time series |
Divisions: | Faculty of Engineering and Natural Sciences |
Depositing User: | Korkut Kaan Tokgöz |
Date Deposited: | 09 Apr 2023 22:19 |
Last Modified: | 09 Apr 2023 22:19 |
URI: | https://research.sabanciuniv.edu/id/eprint/45295 |