Tarhan, Tuba and Şen, Özlem and Ciofani, Melis Emanet and Yılmaz, Deniz and Çulha, Mustafa (2021) Synthesis and characterization of silver nanoparticles decorated polydopamine coated hexagonal boron nitride and its effect on wound healing. Journal of Trace Elements in Medicine and Biology, 67 . ISSN 0946-672X (Print) 1878-3252 (Online)
Full text not available from this repository. (Request a copy)
Official URL: https://dx.doi.org/10.1016/j.jtemb.2021.126774
Abstract
Background: Wound healing is an essential physiological process involving many cell types and their products acting in a marvellous harmony to repair damaged tissues. During the healing process, cellular proliferation and extracellular matrix remodelling stages could be interrupted by undesired factors including microorganisms and altered metabolic activities. In such a case, the process requires some external stimulants to accelerate or remediate the healing stages. Methods: In this study, we report a multifunctional wound healing stimulating agent. In this context, hexagonal boron nitride (hBN) nanoparticles, silver nanoparticles (AgNPs) and polydopamine(pdopa) were used through mussel-inspired chemistry of dopamine to obtain pdopa coated hBN (hBN@pdopa) and AgNPs decorated hBN@pdopa (hBN@pdopa-AgNPs). These two nanostructures were investigated to observe stages of healing. Results: AgNPs were chosen for inflammation reduction and hBN for induced cell proliferation and migration. In in vitro experiments, firstly, high cellular uptake capacity and biocompatibility of hBN@pdopa and hBN@pdopa-AgNPs were evaluated. They were also tested for their reaction against increased concentration of reactive oxygen species (ROS) in injured cells. Finally, their effect on cellular migration, intracellular tube formation and F-actin organization were monitored by light and confocal microscopy, respectively. Conclusion: The results clearly indicate that the hBN@pdopa-AgNPs significantly decrease ROS production, promote wound closure, and reorganize tube formation in cells.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Angiogenesis; Biocompatibility; Hexagonal boron nitrides; Polydopamine; Silver nanoparticles; Wound healing |
Divisions: | Sabancı University Nanotechnology Research and Application Center |
Depositing User: | Mustafa Çulha |
Date Deposited: | 31 Aug 2022 09:17 |
Last Modified: | 31 Aug 2022 09:17 |
URI: | https://research.sabanciuniv.edu/id/eprint/43640 |