Privacy risks of ranked data publication

Warning The system is temporarily closed to updates for reporting purpose.

Suhail, Faizan (2018) Privacy risks of ranked data publication. [Thesis]

[thumbnail of 10228942_FaizanSuhail.pdf] PDF
10228942_FaizanSuhail.pdf

Download (2MB)

Abstract

In recent years, data privacy has become a major concern for data owners who share information on private databases. In order to deal with this issue, data owners employ various mitigation strategies including disclosing partial information on datasets (i.e., mean, median, histograms) or obfuscating the private attributes in a way that keeps a balance between data privacy and utility. However, such methods have failed to preserve privacy under certain adversary models. As an example, distance preserving transforms are found to be vulnerable to attacks in which adversary has access to few known records in the database. In this work, we similarly analyze the privacy implications of rank publication of data records based on the output of a ranking function. While much research has gone in the design of a ranking function, analyzing privacy issues of database rankings is still a novel problem. Many real world website reveal ranking of data records assuming that ranking itself is not privacy sensitive. Examples of such rankings are evaluations of universities, jobs, bank credit applications and hospital statistics on various categories. Our work shows that seemingly naive information about rankings can cause severe privacy leakages. In particular, we show that an adversary with a few known samples from the private data can infer about the actual attributes of an unknown record by utilizing the ranking information.
Item Type: Thesis
Uncontrolled Keywords: Data privacy. -- Ranked data publication. -- Privacy leaks. -- Veri gizliliği. -- Sıralanmış veri yayını. -- Gizlilik sızıntıları.
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7800-8360 Electronics > TK7885-7895 Computer engineering. Computer hardware
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Computer Science & Eng.
Faculty of Engineering and Natural Sciences
Depositing User: IC-Cataloging
Date Deposited: 21 Feb 2019 11:30
Last Modified: 26 Apr 2022 10:29
URI: https://research.sabanciuniv.edu/id/eprint/36862

Actions (login required)

View Item
View Item