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Abstract

In recent years, data privacy has become a major concern for data owners who share

information on private databases. In order to deal with this issue, data owners employ var-

ious mitigation strategies including disclosing partial information on datasets (i.e., mean,

median, histograms) or obfuscating the private attributes in a way that keeps a balance

between data privacy and utility. However, such methods have failed to preserve privacy

under certain adversary models. As an example, distance preserving transforms are found

to be vulnerable to attacks in which adversary has access to few known records in the

database.

In this work, we similarly analyze the privacy implications of rank publication of data

records based on the output of a ranking function. While much research has gone in the

design of a ranking function, analyzing privacy issues of database rankings is still a novel

problem. Many real world website reveal ranking of data records assuming that ranking

itself is not privacy sensitive. Examples of such rankings are evaluations of universities,

jobs, bank credit applications and hospital statistics on various categories. Our work

shows that seemingly naive information about rankings can cause severe privacy leakages.

In particular, we show that an adversary with a few known samples from the private

data can infer about the actual attributes of an unknown record by utilizing the ranking

information.
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Özet

Son yıllarda, veri gizliliği, özel veritabanları hakkında bilgi paylaşan veri sahipleri

için büyük bir endişe haline gelmiştir. Bu konuyla ilgilenmek için, veri sahipleri veri

kümeleri hakkında kısmi bilgilerin (yani, medyan, histogramlar) ifşa edilmesi veya özel

niteliklerin veri gizliliği ile fayda arasında dengeyi koruyacak şekilde gizlenmesi gibi

çeşitli etki azaltma stratejileri kullanır. Bununla birlikte, bu gibi yöntemler, bazı olumsuz

modellerde gizliliğin korunmasında başarısız olmuştur. Örnek olarak, mesafe koruma

dönüşümlerinin, kötü niyetli bir kişinin veritabanındaki bilinen birkaç kayda erişebileceği

saldırılara karşı savunmasız olduğu gösterilmiştir.

Bu çalışmada, benzer şekilde bir sıralama fonksiyonunun çıktısına dayanarak veri

kayıtlarının sıralı yayınlarının gizlilik etkilerini analiz ettik. Sıralama fonksiyonlarının

tasarımında birçok araştırma yapılmasına rağmen, veritabanı sıralamasının gizlilik konu-

larını analiz etmek halen üzerinde çalışılmamış bir alandır. Birçok gerçek dünya web

sitesi, sıralamanın kendisinin mahremiyete duyarlı olmadığı varsayılarak veri kayıtlarının

sıralamasını yayınlamaktadır. Bu sıralamalara örnek olarak üniversite, iş, banka kredisi

başvuruları ve hastane istatistiklerinin çeşitli kategorilerdeki değerlendirmeleri verilebilir.

Bu çalışmada, sıralamalarla ilgili sorunsuz görünen bilgilerin ciddi gizlilik sızıntılarına

neden olabileceğini gösterilmektedir. Özellikle, özel verilerden birkaç bilinen örneğe

sahip bir rakibin, sıralama bilgisini kullanarak bilinmeyen bir kaydın gerçek özellikleri

hakkında çıkarım yapabileceğini gösteriyoruz.
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Chapter 1

Introduction

Data privacy has always been a major concern when dealing with applications that

share information on private databases. Data privacy advocates urge that data processing

techniques may reveal sensitive information, if applied directly on original data. To ad-

dress this problem, one basic solution has been to limit sharing by only disclosing partial

information on the dataset. Partial information can be in the form of statistics (e.g., mean,

median, histograms) or an output of a obfuscating function (e.g., distances between en-

tries). However, it has been previously shown that, such partial information may also be

used to violate privacy of data owners under certain adversary models. As an example,

distance preserving transformations (DPT) [1] are vulnerable to known sample attacks in

which the adversaries know the exact attributes of several points in the dataset [2–4].

In this work, we propose a similar privacy analysis on the sharing of ranking. We show

that transformations that preserve ranking or any statistics inferring ranking are vulnerable

to known sample attacks. Ranking in our domain is the ordering of the multidimensional

data records with respect to the output of any given function. Many real-world websites

disclose ranking of data records, assuming that ranking by itself is not privacy-sensitive.

For instance, universities publish entrance merit list by evaluating student’s credentials

such as GPA, entrance exam result and recommendation letters. Ranking function in

this case is a simple weighted average of various application components. Another real

incident that attracted much criticism happened when the New York City Education De-

partment published individual performance rankings of 18,000 public school teachers [5].

The rankings were calculated based on students’ performance on official exams over a five

year period.

The traditional belief has been that ranking information alone is not sufficient to
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breach data owner’s privacy, however, our analysis unveils that this seemingly naive in-

formation can cause severe privacy leakages. In particular, we show that an adversary

with a few known samples from the private data can learn about the actual attributes of an

unknown record by utilizing the ranking information.

1.1 Thesis Motivation

Consider a real world application of our attack. The Consumer Assessment of Health-

care Providers and Systems (CAHPS) analyze patients feedback on hospital-care using

standardized measurements that allow an effective comparison to be made between hospi-

tals [6]. Hospitals use this data to identify the areas which require quality improvements.

Moreover, US news publishes the hospital ranking lists [7], based on these standardized

measurements, such as ’best hospitals by specialty’, ’best hospitals by procedures’ and

’best children hospitals’ to name a few. Consider the following example: Table 1.1(a)

shows a private dataset of eight hospitals containing the rating in four domains namely

resources, expert opinion, mortality rate and patient safety.

The ranking function, denoted by F , is based on a weighted average function with

each attribute having an equal weight. Table 1.1(b) demonstrates the sorted ranking func-

tion values generated for the hospitals in Table 1.1(a). As an example, ranking func-

tion for Northwestern Hospital (NH) can be expressed by the equation: F(NH) =

(0.25 × 41.5) + (0.25 × 34.4) + (0.25 × 41.2) + (0.25 × 47.3). After evaluating the

expression, we get a value of F(NH) = 41.1. We use these values to generate our rank

publication dataset as shown in table 1.1(c). Note that this dataset is available publicly to

all the hospitals. Ranking shows that Michigan Medicine is placed at the top owing to the

highest value of F , whereas, Northwestern Hospital is ranked eighth in the list.

Consider the following scenario in which our attack can be employed. Three hospitals

from table 1.1(a), Cleveland Clinic, Northwestern Hospital and New York Hospital form

an alliance to improve the health-care facilities available to their patients. They central-

ize their databases such that these hospitals have access to each others private data. An

attacker from Northwestern Hospital has access to this data and this constitutes his set of

known records. The aim of the attacker is then to infer about private attributes of Johns

Hopkins Hospital, since, he can’t observe them directly due to lack of privileges. The
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attacker utilizes the set of known records and the rank publication data in table 1.1(a) to

formulate an attack on private attributes of Johns Hopkins Hospital.

By using this information only, the attacker efficiently estimates the private attribute

values for Johns Hopkins Hospital. Our attack, with only three known records, is able

to retrieve attributes: resources, expert opinion, mortality rate and patient safety with an

error of 0.5, 5.1, 0.3 and 2.7, respectively.

Table 1.1: Hospital assessment data-set, ranking function and released rankings.

Name Resources Expert opinion Mortality score Patient safety

Cleveland Clinic 50.5 43.9 41.1 48.0

Michigan Medicine 99.6 88.5 89.4 98.7

Northwestern Hospital 41.5 34.4 41.2 47.3

Mayo Clinic 81.1 89.8 73.3 81.3

Special Surgery Hospital 61.6 72.4 64.9 59.5

Johns Hopkins Hospital 44.3 51.1 43.4 46.5

NewYork Hospital 65.3 75.7 63.6 72.3

Massachusetts Hospital 83.1 92.6 95.8 98.5

(a) Private database D with eight records

F

94.0

92.5

81.3

69.2

64.6

46.3

45.8

41.1

(b)

Ranking

function

of hos-

pitals

Name

Michigan Medicine

Massachusetts Hospital

Mayo Clinic

NewYork Hospital

Special Surgery Hospital

Johns Hopkins Hospital

Cleveland Clinic

Northwestern Hospital

(c) Published ranking of hos-

pitals
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1.2 Thesis Contribution

In this work, we introduce a known sample attack on rankings. That is, an attacker

has a copy of published ranking of all records in a database along with a small set of

known samples belonging to the same database. The adversary runs our attack algorithm

using this information and infers about each private attribute value of all the records in

the database (i.e., excluding the known ones).

The salient features of our attack can be summarized as follows: (1) We treat an

attack on ranking as a noisy case of an attack on pairwise euclidean distance relations.

That is, we reduce our problem to another sub-problem that we solve in Euclidean space.

(2) Our attack only relies on a set of known records and ranks, without requiring any

prior information about data distribution. (3) In order to deal with high dimensional data,

we develop an efficient index structure to increase the efficiency of the attack. (4) We

predict the noise parameter using only the set of known samples, which in turn helps us

apply the attack on ranks. Moreover, for the sake of making the attack resilient to noise,

we introduce a voting mechanism. (5) To demonstrate the effectiveness of our attack,

we run the algorithm on real and synthetic data-sets. (6) We introduce a special metric,

namely expected distance, to measure per dimension and overall distance between the

estimated and actual records. Experiments show that our attack algorithm significantly

reduce the expected distance, when there is moderate to low noise introduced by the

ranking function.
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Chapter 2

Preliminaries and Background

Information

In the rest of the thesis, we use the following notations, unless otherwise stated. The

data owner has a private database represented byD(r1, ..., rn), where each ri ∈ D denotes

one record. Each record has m + 1 attributes, where A1, ..., Am are the private attributes

and B1 is the public attribute. We use the notation r[Ai] or r[B1] to refer to a private or

public attribute of a record. We assume that the domain of each attribute Ω(A) or Ω(B) is

well-defined. For the example in Table 2.1, Name is a public attribute, whereas midterm

and final are private attributes, and Ω(Final) is the set of integers between 0 − 100. In

addition to that, we treat each record ri as a point in Euclidean space, and thus use point

and record interchangeably.
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Table 2.1: Students private data-set and released rankings.

Name Midterm Final GPA

alice 72 48 57.6

bob 40 27 32.2

carol 68 63 65

craig 95 81 86.6

dave 22 7 13

eve 44 40 41.6

frank 94 67 77.8

pat 53 47 49.4

(a) Private database D with eight records

Name

craig

frank

carol

alice

pat

eve

bob

dave

(b) Rank-

ings of

student

based on

GPA

2.1 Rankings

A ranking functionF : Rm → R takes as input a record and produces a score. Records

are ranked in decreasing order of their scores. Our attack is generic, and assumes no

knowledge of the ranking function F or the output scores. However, to have a meaningful

attack, we must assume F satisfies the following properties:

1. Inclusiveness: The private attribute we are trying to infer plays a role in the ranking

function and has impact on score. Otherwise, if the attribute is completely uncor-

related or unrelated to the score, we cannot predict its value from rankings or even

from raw scores.

2. Transitivity: Say that we have 3 records r1, r2, r3 for which F(r1) < F(r2) and

F(r2) < F(r3). Then, it must hold that F(r1) < F(r3).

3. Monotonicity: For the 3 records F(r1) < F(r2) < F(r3), say that r1[C] < r2[C]

where C is an attribute impacting score, and for all attributes D other than C,

r1[D] = r2[D] = r3[D]. Then, it must hold that r2[C] < r3[C], and by transitivity,

r1[C] < r3[C].
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Inclusiveness ensures that the private attributes we are trying to infer have non-zero cor-

relation with rankings; our experiments confirm the intuition that higher the correlation,

more successful our inference attack will be. Transitivity ensures that records’ final rank-

ing constitutes a total order. Monotonicity ensures that F behaves the same way for each

pair of values across the whole domain, e.g., it is not a piecewise function with undefined

regions, or it does not maintain order for some values but reverse order for others.

An example ranking function F that satisfies the above conditions and is a popular

choice in the database ranking literature is the linear function [8–10]:

F(r) =
m∑
i=1

wAi · r[Ai] (2.1)

where wi ∈ (0, 1] are the weights assigned to each attribute. We use this linear F in our

running examples throughout the thesis, but our attack does not need to assume a linear

F .

As an example, the function F , denoted by GPA in table 2.1a, is expressed asGPA =

0.4×midterm+0.6×final, where midterm and final are private attributes with weights

0.4 and 0.6, respectively. Alice and craig scored a GPA of 57.6 and 86.6, respectively,

and since craig has a higher GPA then alice, craig is assigned a higher rank in table 2.1b.

2.2 Geometric Perspective

The technical details of our attack are best explained with the help of geometric prop-

erties and visualizations. We therefore devote this section to introduce relevant geometric

primitives and definitions.

2.2.1 Euclidean Distance

Recall that our database D has m private attributes. This database can be equally

represented using an m dimensional space resulting from the Cartesian product: Ω(A1)×

Ω(A2) × ... × Ω(Am). Each record ri ∈ D translates to a point in this high-dimensional

space. In the remainder of the thesis, we use record and point interchangeably. The

distance between two points ri, rj is denoted by δ(ri, rj). Without loss of generality, we
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use Euclidean distance defined formally as follows:

δ(ri, rj) =

√√√√ m∑
k=1

(ri[Ak]− rj[Ak])2

2.2.2 Distance Matrix

The Distance matrix of a database D(r1, ..., rn) contains pairwise distance between

the data points in D. It is a n× n, real-valued and symmetric matrix A, such that Ai,j =

Aj,i = δ(ri, rj).

For example, let the student database D contain marks achieved in midterm and final

exam, as shown in table 2.1a. We calculate the distance between the first two records

which corresponds to A1,2 in the distance matrix: A1,2 = δ(r1, r2) =√
(72− 40)2 + (48− 27)2 = 38.27

2.2.3 Hypersphere and Hyperball

Next, we introduce geometric objects in d-dimensional space Rd, where d ≥ 2. A

hypersphere SC,ρ is defined using a center point C ∈ Rd and a radius ρ, and denotes the

collection of points in the d-dimensional space that are at distance ρ from C. That is, each

point r located on SC,ρ satisfies: ρ = δ(r, C). Given a hypersphere SC,ρ, the hyperball

BC,ρ denotes the space enclosed by SC,ρ. Hyperball BC,ρ is said to be closed if it includes

SC,ρ and open otherwise.

2.2.4 Hyperplane and Half-space

Let r1, r2 be two points in Rd. The collection of points equidistant to these two

points is a hyperplane Hr1r2 , such that all points r on this hyperplane satisfy the property

δ(r1, r) = δ(r2, r). We call such a hyperplane an equidistant hyperplane. A hyperplane

divides Rd into two portions called half-spaces. A half-space is said to be closed if it

includes the hyperplane, and open otherwise. In the case of an equidistant hyperplane, it

is clear to see that exactly one of the half-spaces will contain the first point r1, and the

other half-space will contain the second point r2. We refer to these half-spaces as Pr1 and

Pr2 respectively.

8



In 2-dimensional space R2, a hyperspere is a circle, a hyperplane is a line, and the two

half-spaces are those regions that are on either sides of the line.

2.2.5 Relation Function

Given an arbitrary set of records r1, r2, r3, r4 ∈ D and their corresponding ranks

R1,R2,R3,R4, then relation function is given by:

Fλ((r1, r2), (r3, r4)) =


−1 if λ(r1, r2) < λ(r3, r4)

0 if λ(r1, r2) = λ(r3, r4)

1 if λ(r1, r2) > λ(r3, r4)

Where the function λ(ri, rj) ∈ {γ(ri, rj), ψ(ri, rj)}; ∀i, j = 1, 2, . . . , n and i 6= j.

Relation function Fλ keeps a track of the pairwise relation of the records with respect

to their euclidean distances and their ranks. We refer to the rank relations and euclidean

distance relations using the notation Fγ and Fψ, respectively.

For Fγ the function γ(ri, rj) = |Ri − Rj|, where |.| denotes the absolute value. On

the other hand, for Fψ the function ψ(ri, rj) = δ(ri, rj). Later, we utilize the relation

functions to design our attack on rankings.
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Chapter 3

Related Work

In this chapter, we survey various attacks on DPTs and rank publication in the litera-

ture.

3.1 Attacks on DPTs

DPTs allow meaningful data-mining models to be formed which have a similar quality

as that formed by the original data. Due to this reason DPTs have gained significant at-

tention [1, 11–14]. In order to uncover vulnerabilities of DPTs, various attack techniques

have been developed to infer about private data [2–4, 8, 15–17]. For a detailed survey,

we refer readers to [18]. In [2], Liu et al. proposes two kind of attacks on DPTs where

attacker has some prior knowledge about the data. First is the known input-output pair

attack, in this case, the attacker has access to some private data records and their corre-

spondences to transformed records. Attacker can infer about transformation function by

using linear algebra techniques. This attack makes a strong assumption about the amount

of information known to the attacker, hence making it infeasible for practical application.

Second is the known sample attack where the attacker has access to a collection of data

records drawn from a similar distribution as the private data. In this case, principal com-

ponent analysis is employed to learn about the original data. The only drawback of this

approach is that it requires significantly large amount of known samples (e.g., 10% of the

original data) to accurately estimate original data.

In [3], Guo et al. adopts an Independent Component Analysis (ICA) based technique

to reconstruct the original data by assuming that the attacker has a set of known samples.

However, their approach requires large amount of known samples (e.g., 500-1000) to re-

10



cover the original data. Furthermore, they don’t provide a metric to measure the accuracy

of reconstructed data. Chen et al. [15] formulates an attack assuming that the attacker has

prior knowledge about a sample of input-output pairs. Moreover, they also assume that

the number of linearly independent known samples are no less then data dimensions. For

the sake of private data estimation, they propose an approach based on linear regression.

In [16], Turgay et al. extends the known sample attack in [2] by assuming that a

distance matrix is available to the attacker. They propose an attack based on principle

component analysis and presume that the attacker has information about underlying data

distribution. Giannella et al. [4] develops a known sample attack without having any con-

straints on the number of known samples. Their approach is probabilistic, which means

that the location of reconstructed record cannot be identified with 100% confidence.

All the work mentioned in this section assumes that the exact (or noisy) distances

between the entities are revealed. However, using only the rankings, which is the fo-

cus of this work, such distances cannot be computed. Thus, our problem definition and

methodology in this work is significantly different from all the aforementioned works.

3.2 Attacks on RPTs and rank publication

More recently, Kaplan et al. [17] propose a Known sample attack on RPTs for two

dimensional data. They base the attack on geometric methods assuming that relation

retrieval function is available to the attacker. While we focus on a fundamentally different

problem, the method we follow in this work is similar to their approach, however, it

cannot be readily applied in our domain for two reasons. First, the computational and

space complexity of the previously proposed attack are both exponential in the number

of dimensions, thus cannot handle high-dimensional real datasets. Second, the type of

noise we require is fundamentally different from their approach. Instead of employing

Gaussian noise, we adopt a randomized response model that allows us to better predict

noise parameters which in turn gives us a good approximation for the attack on ranks.

In [8], Rahman et al. base their attack on a kNN query interface over a database by uti-

lizing the rank information of records. They divide the problem space in two dimensions:

the type of query (i.e., point or range) and adversary’s potential (i.e., insertion possible or

not). For each problem subspace, inference is derived by observing the change in ranks

11



after initializing a sequence of queries. Experimental results show that they recover target

record, in most cases, with high success rate. However, the number of queries required

for such disclosure is high. For example, a record with 10 public attribute requires 400-

700 queries to be made. In our domain, we assume only one ranking dataset is released

and adversary has no way of changing the attributes of the participants, thus issuing cus-

tom queries is not possible which in turn makes our attack much harder. Furthermore,

they assume that all the attributes are discrete which is a relaxed constraint, since most

real-world data contain numerical values.
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Chapter 4

Methodology and Problem Definition

4.1 Attack Scenario

Our attack is conducted in the following setting. A ranking is publicly available but

without aggregate scores or individual attribute values. Examples of such rankings are

evaluation results of university, job and bank credit applications, hospital statistics, and

so forth. The adversary has a copy of this ranking along with a small set of known

samples whose records are part of the ranking, e.g., the adversary knows the attributes of

himself and a few close friends who applied to the same university. The adversary runs

our attack with the public ranking and his known sample set. After the attack finishes, the

adversary will infer each private attribute value of remaining individuals (who are not part

of his known samples) with small error and high confidence. Next, we give brief formal

descriptions for each step.

Rank Publication. The private database D(r1, ..., rn) containing raw records and private

attributes is stored safely and never released due to its sensitive content. A ranking is

computed by applying the function F(ri) on each record, and then sorting the records

according to their scores F(r1),F(r2), ...,F(rn) in decreasing order. This ranking is

made publicly available.

Adversarial Knowledge. The adversary only needs the following pieces of information

to conduct the attack:

1. The published rankings.

2. A set of known samples denoted K = {r1, r2, ...}. For all records rt ∈ K, the

adversary already knows their attribute values, i.e., rt[Ai] and rt[Bj] are known
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across all private attributes Ai and public attributes Bj .

Known sample attacks are popular in the literature [2, 4, 16, 17, 19]. Typically, our

attack requires the adversary to have only 5 − 10 known samples which is a realistic as-

sumption, contrary to some previous works requiring tens or hundreds of known records.

For example, the adversary himself and a few close friends could be part of the rankings,

or the adversary may be able to inject a few records to D (similar to a machine learning

poisoning attack).

What does the adversary not know? The adversary need not have the following infor-

mation, making the attack more plausible and realistic:

1. Knowledge of how the scoring function F works. For example, the weights wAi ,

wBj are not known by the adversary. In university, job, or bank credit applications,

the definition of F is often proprietary and not disclosed to the public.

2. The output score F(ri) of any record. If the adversary had the output scores of

his known samples, this could allow him to reverse-engineer or make inferences

regarding the definition and weights of F , making an attack easier. However, we

do not need to assume this.

We make the above conservative assumptions to build a widely applicable attack.

Clearly, our approaches still work if an adversary knows the above. We expect that if

the above were indeed known by the adversary, potential attacks could be faster and even

more effective.

Computational Requirements. The attack is typically not executed in real-time, and

therefore there are no strict efficiency requirements. We can assume the adversary runs

the attack offline with sufficient computational resources. Nevertheless, the attack should

conclude in a reasonable amount of time. For example, even if a person’s job or bank

credit application details may not change within a few minutes, they could change over a

few days or weeks, which implies the private attributes (and consequently, the rankings)

may change over time. Hence, we will introduce methods for time and space efficiency

in Section 4.4 to ensure our attack completes in a short period of time using a commodity

laptop.

Attack Output: Private Attribute Inference. The private attribute inference problem

can be stated formally as: Given a set of known samples K, the published rankings, and
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a target record rE /∈ K; what is the value of rE[Ai] where Ai is a private attribute?

Our attack is for answering the above question. Clearly, private attribute inference can

be repeated for many target records. In our experiments, we typically run the attack over

5 unknown records rE ∈ D \K, and report the average results.

4.2 Attack in euclidean space

Our objective is to discover actual attributes of an unknown record rE given a set of

known records K and their respective ranks. We reduce this problem to a problem that

we can solve in Euclidean space. Specifically, we first consider, in this sub-section, a sub-

problem in which an adversary has access to K and the outputs of Fψ on all quadruples

in K+ rE and tries to discover rE . This sub-problem is partially addressed in [17] but the

proposed solution cannot readily be applied in our domain. We later extend this problem

to the case in which the outputs of Fψ are noisy and the noise follows a randomized

response model. We explain how the complete reduction works in later sections.

4.2.1 An illustrative example

Our attack includes operations with hyperspheres and hyperplanes in continuous Rn

euclidean space. Since these operations are non-trivial to implement, we discretize the

data space into grids as shown in figure 4.1. We assume that the data space is made up

of equal sized n-dimensional grids. Decreasing the size of the grids would mean a finer

granularity and hence, an increase in the number of grids in the data space.

We start by giving an illustrative example of our attack in 2-dimensions. Consider

a database D with only two private attributes A1 and A2, where each record ri ∈ R2.

An attacker has access to two known samples rA and rB, which forms the set K. Let the

distance matrix of the records in D be represented by M . Then, the aim of the attacker is

to locate the target record rE in D.

Observation 1. If Fψ((rA, rE), (rB, rE)) = −1 then rE must be located in half-space

PrA .

Proof. By the definition of Fψ, we have δ((rA), (rE)) < δ((rB), (rE)). The hyperplane

HrArB has a property that it contains all the points equidistant to rA and rB. All the
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pointsX ∈ PrA , satisfy the inequality δ((rA), (X)) < δ((rB), (X)), while points Y inPrB
satisfy the inequality δ((rA), (B)) > δ((rB), (B)) and the points Z on HrArB satisfy

δ((rA), (Z)) = δ((rB), (Z)). Thus, rE is in PrA .

Observation 2. If Fψ((rA, rE), (rB, rE)) = 1, then rE must be located in half-space PrB .

Observation 3. If Fψ((rA, rE), (rB, rE)) = 0 then rE must be located on hyperplane

HrArB .

Proofs of observations 2 and 3 follow trivially from observation one hence, we skip

their proofs. Using the two known samples we generates a hyperplane HrArB which

contains a collection of points that are equidistant to rA and rB. The main idea then is to

examine the distance between the two known points and the target rE (i.e. δ((rA, rE)) and

δ((rB, rE))). Based on this relation, we iteratively prune the data space while searching

for rE . This process can be repeated for all the unique pair of known samples.

As an example, consider the distance matrix in figure 4.1. As the distance δ((rA, rE)) =

6 is less then δ((rB, rE)) = 7.07 thus, Fψ((rA, rE), (rB, rE)) = −1. The attacker draws

a hyperplane HrArB and finds out that rE is closer to rA as compared to rB. He concludes

that rE ∈ PrA and prunes PrB .

Observation 4. If Fψ((rA, rB), (rA, rE)) = −1, then rE must be located outside the

hypersphere SrA,δ(rA,rB).

Proof. By the definition of Fψ, we have δ((rA), (rB)) < δ((rA), (rE)). The hypersphere

SrA,δ(rA,rB) contains an infinite collection of points X located inside or on its surface that

satisfy the property δ((rA), (X)) <= δ((rA), (rB)). It follows that rE must be located

outside the hypersphere.

Observation 5. If Fψ((rA, rB), (rA, rE)) = 1, then rE must be located within the area

enclosed by the hypersphere SrA,δ(rA,rB).

Observation 6. If Fψ((rA, rB), (rA, rE)) = 0, then rE must be located on the hyper-

sphere SrA,δ(rA,rB).

The second type of observations (i.e. obs. 4,5 and 6) include creating a hypersphere

in n-dimensional data space. We skip the proofs for observation 5 and 6 since, they
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Figure 4.1: Discretized data space of D containing three records in R2. Actual location of

three records (on the left) and distance matrix of these records (on the right).

are similar to proof of observation 4. Given the two known samples rA and rB, the

attacker creates a hypersphere SrA,δ(rA,rB) centered at rA with a radius of δ(rA, rB). He

compares the distances δ(rA, rB) and δ(rA, rE) and infers the location of rE . Based on

this observation, he prunes the region that cannot contain rE . The same procedure can be

followed for the hypersphere SrB ,δ(rA,rB) however, in this case attacker needs to make a

comparison between δ(rA, rB) and δ(rB, rE). Again, these observations are applicable to

all unique pair of known samples.

We demonstrate these observations in figure 4.1. Since δ(rA, rB) = 2 is less than

δ(rA, rE) = 6, we have Fψ((rA, rB), (rA, rE)) = −1. The attacker creates a circle with

center rA and radius δ(rA, rB). He infers that rE must be located outside of this circle as

rE is farther away from rA than rB. Similarly, he creates a second circle centered at rB

with a radius of δ(rA, rB). Now, since δ(rB, rE) = 7.07 is greater than δ(rA, rB) = 2,

using the similar reasoning, the attacker deduces that rE is located outside this circle.

For all the unique pair of known samples, We prune the grids that don’t contain rE .

Note that we use a defensive approach here, that is we prune only when a grid can be

completely pruned from the search space. For example, in figure 4.1 we prune only the

grids that lie completely inside the half-space PrB . The naive approach of testing if a

grid completely resides in the half-space is to check for every corner, if the corner point

is located in the half-space. If at least one corner does not reside in the half space, we

do not prune the grid to eliminate the possibility of over-pruning. For instance, we avoid

over-pruning by not removing grid V from the search space because half of it is located
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in PrA and this region may also contain rE . By pruning grid V , we would violate the

correctness of our algorithm since left portion of this grid lies in PrA . On the other hand,

by not pruning V we are also keeping the region of this grid that is contained in PrB
which otherwise would have been pruned if we didn’t discretize the search space.

The number of corners of a grid in m-dimensional space is 2m. Thus, checking if

every corner of the grid resides in a given half-space is not efficient for high dimensional

data. We address this problem along with the formalization of the attack in the next

section.

4.2.2 Attack Formalization and Optimization

In this section, we explain our attack in m-dimensional space Rm and present a novel

and efficient technique to locate a grid with respect to a hypersphere or a hyperplane.

We propose our attack methodology in algorithm 1. The universe U represents all the

possible values that the private attribute of a record r[Aj] may have. The boundary of U

is defined by the domain of private attributes given by Ω(A). We don’t utilize the public

attributes in our attack since, they are already available to the attacker. The attacker knows

about few samples from U which constitutes his set of known samples K. Moreover, he

also has access to the euclidean distance relation function Fψ. The target record rE is

assumed to be located anywhere inside U and is denoted by the identifier E. The aim of

the attacker is to infer about the private attributes of rE given the information above.

Initially, we divide the data space into uniform m-dimensional grids. Each grid has a

total of 2m corners. Let a corner of the grid G be denoted by cj , where j = 1, . . . , 2m. We

sequentially iterate over all these grids once and check if a pair of known sample votes to

prune it. A grid is removed immediately from the search space if a single pair of known

sample polls to prune it.

In algorithm 1 we prune according to the observations mentioned in the previous

section. On lines 3 − 4 we implement observation 1 and on lines 5 − 6 we implement

observation 2. These observations require a comparison to be made between the distances

δ(rA, rE) and δ(rB, rE) followed by a call to function GridInHalfSpace which we discuss

shortly. Then, on lines 8 − 9 we apply observation 4 and on lines 10 − 11 we apply

observation 5 with calls to functions GridInSphere and GridOutOfSphere, respectively.

Note that lines 8 − 11 repeat twice to apply observation 4 and 5 on the hypersphere that
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Figure 4.2: A dataspace showing the weakest corner (marked by a dot)c of three grids in

R2.

are centered at rA and rB, respectively. If a grid satisfies any of these observations we

remove it immediately from the search space. After repeating this algorithm on all grids,

the final output of the attack is a small subset of grids that are unpruned, and thus, may

contain rE .
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Algorithm 1 Prunes a grid using relation function and known samples
Input: U : denotes the data space ,

G ⊆ U : a grid and its boundaries,

Fψ: euclidean distance relation function of the original data,

K = {r1, .., rt|ri ∈ U}: set of known samples,

E: an identifier to denote the target record rE .

Output: (True ∪ False): determines whether a grid would be pruned or not.

0: function PRUNEGRID(G,Fψ, K,E)

1: c← 0

2: for each pair (rA, rB) ∈ K do

3: if Fψ((rA, rE), (rB, rE)) = −1 then

4: if GridInHalfSpace(G, rB, rA) then return True

5: else if Fψ((rA, rE), (rB, rE)) = 1 then

6: if GridInHalfSpace(G, rA, rB) then return True

7: for each (r1, r2) ∈ {(rA, rB), (rB, rA)} do

8: if Fψ((r1, r2), (r1, rE)) = −1 then

9: if GridInSphere(G, r1, r2) then return True

10: else if Fψ((r1, r2), (r1, rE)) = 1 then

11: if GridOutOfSphere(G, r1, r2) then return True

12: return False

Grid in Half Space

On line 4 we verify that if a grid lies completely in the half-space PrB . As mentioned

before, trivial approach to verify that G is fully contained in PrB is to check if δ(cj, rA) >

δ(cj, rB) for all j. This would take 2m+1 euclidean distance calculations, since we will

calculate twice for each cj . Similarly, on line 6 we check if a grid lies completely in the

half-space PrA . This verification would again take 2m+1 euclidean distance calculations.

This approach is problematic since it requires an exponential amount of computations and

thus, is impractical for high dimensional data. In order to deal with this issue, we now

introduce an efficient approach to identify the location of G relative to PrA and PrB .

Definition 1 (Weakest Corner). Given a grid and its boundaries G = {(g1min, g1max), . . . ,

(gmmin, g
m
max)}, halfspace Pr1 formed by hyperplaneHr1r2 . The weakest corner c ofG with

respect to Pr1 is defined as:
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c[i] =

g
i
min if gimin · (r1[i]− r2[i]) < gimax · (r1[i]− r2[i])

gimax otherwise
(4.1)

Where i = 1, . . . ,m denotes the private attribute index.

Definition 2 (Weaker neighbour). Given half space Pr1 , for any corner in grid c′, we say

another corner c is a weaker neighbour of c′ and write c′ >> c if and only if c and c′

differ only in dimension α such that c[α] = c[α], c′[α] 6= c[α], and c[i] = c′[i] for all

i 6= α.

Given half space Pr1 , let c and c′ be two corners such that c′ >> c. Then, if c is in

Pr1 , then so is c′.

Proof. If c is in Pr1 , c is closer to r1 than r2. Thus, ∆c = δ(c, r1) − δ(c, r2) < 0.

Substituting the definition of δ, we have

∆c = Σi(r1[i]− c[i])2 − Σi(r2[i]− c[i])2

= φ+ (r1[α]− c[α])2 − (r2[α]− c[α])2

= φ+ (r1[α]− r2[α]) · (r1[α] + r2[α]− 2c[α])

where φ = Σi 6=α(r1[i]− c[i])2 − Σi 6=α(r2[i]− c[i])2. Similarly,

∆c′ = φ+ (r1[α]− r2[α]) · (r1[α] + r2[α]− 2c′[α])

We are interested in the sign of the difference between ∆c′ and ∆c:

∆c′ −∆c = 2(r1[α]− r2[α]) · (c[α]− c′[α])

We consider two cases separately. First, assume that r1[α] − r2[α] > 0. In this case, by

Definition 1, we have c[α] = gimin and c′[α] = gimax. We now also have ∆c′ − ∆c < 0.

Given that ∆c < 0, we get ∆c′ < 0 as well.

Now we consider the case r1[α] − r2[α] ≤ 0. By Definition 1, we have c[α] = gimax

and c′[α] = gimin. This again gives ∆c′ −∆c ≤ 0.

Since in both cases, we have ∆c′ −∆c ≤ 0 given ∆c < 0 Thus, ∆c′ < 0 as well. c′ is

in Pr1 .

Given half space Pr1 , let c′ be any corner that is not the weakest corner. Then, if c is

in Pr1 , then so is c′.
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Proof. If c′ >> c, then the proof follows from Lemma 4.2.2. If not there exists a series

of corners c′, c1, . . . , ck, c for (k ∈ [1 − (n − 1)]) such that ck >> c, ci >> ci+1 (i ∈

[1− (k − 1)]), and c′ >> c1. Proof follows by applying Lemma 4.2.2 at each step.

Theorem 1. A grid G lies completely in halfspace Pr1 if and only if the weakest corner c

of G with respect to Pr1 lies in Pr1 .

Proof. (→) If the corner c ofG is not in Pr1 , obviouslyG cannot be said to be completely

within Pr1 .

(←) If c lie within Pr1 , by Lemma 4.2.2, all corners lie within Pr1 . Since the space Pr1
andG does not have any curved hyperplane side, we conclude thatG is completely within

Pr1 .

To check if a grid is completely inside a half-space compare δ(c, r1) and δ(c, r2).

Algorithm 2 shows our approach to identify the location of a grid G with respect to a

hyperplane Hr1r2 . That is, whether G is located in half-space Pr1 or Pr2 . The main idea

is to compute the weakest corner c of G relative to Pr1 (lines 3 − 4) and then compare

the distances δ(c, r1) and δ(c, r2) (line 5). By Theorem 1, G completely resides in Pr1 if

δ(c, r1) < δ(c, r2). Otherwise, it means that some portion of G is either located on Hr1r2

or inside Pr2 . The same procedure can be repeated for checking that G lies completely

inside Pr2 . However, in this case corner c is computed relative to Pr2 .

This approach is further exemplified in fig. 4.2 (2-dimensions). Our goal is to identify

if grids G1, G2 and G3 lie in Pr1 . The corner c for G2 can be calculated as follows:

c[1] = 1 since the inequality in eq. 4.1 equals 2 > −2 and c[2] = −3 since the inequality

in eq. 4.1 equals 10 > 6. Thus, the corner c = (1,−3) for G2. Now the next step is to

check if c is closer to r1 than it is to r2. Since δ(c, r1) = 2.82 > δ(c, r2) = 2 we can

conclude that G2 is not fully contained in Pr1 . This is also evident in the figure as the

right portion of G2 is located inside Pr2 . We have marked the weakest corner of these

three grids in the figure. By doing similar calculations on the remaining grids one can

determine that only G1 is completely contained in Pr1 .
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Algorithm 2 Checks if a grid is located in the specified half-space.
Input: G = {(g1min, g1max), . . . , (gmmin, gmmax)}: a grid and its boundaries,

r1, r2: denotes the two known points.

Output: (True ∪ False): determines if the grid lies in the half-space Pr1 .

0: function GRIDINHALFSPACE(G, r1, r2)

1: c[i]← 0; i = 1, 2, . . . ,m

2: Build the equidistant hyperplane Hr1r2 resulting in open half-spaces Pr1 , Pr2
3: for i = 1 to m do

4: if gimin · (r1[i]− r2[i]) < gimax · (r1[i]− r2[i]) then ci = gimin else ci = gimax

5: if δ(c, r1) < δ(c, r2) then return True else return False

Grid in Hypersphere

In algorithm 1, we verify that a grid G lies completely inside and outside of the hy-

persphere Sr1,δ(r1,r2) on lines 9 and 11, respectively. The trivial approach would be to

compare the distances δ(cj, r1) and δ(r1, r2) for all j. In the case we want to verify

that G lies completely inside Sr1,δ(r1,r2), then for each of the j corners the condition

δ(cj, r1) < δ(r1, r2) needs to be satisfied. That is, we make sure that each corner of

G lies within the radius of Sr1,δ(r1,r2). On the other hand, if we want to verify that G is

fully outside Sr1,δ(r1,r2), it will require the inequality δ(cj, r1) > δ(r1, r2) to hold for all

j. In other words, we make sure that each cj is lying outside Sr1,δ(r1,r2). Since both of

these techniques require 2m euclidean distance calculation, it is not a practical solution

and necessitates a higher execution time.

In order to deal with this issue, We introduce an efficient way to localize a grid relative

to a hypersphere. Our approach encompasses finding the farthest corner of G relative to

the center r1 of Sr1,δ(r1,r2). Then G is contained fully inside Sr1,δ(r1,r2), if the farthest cor-

ner lies inside Sr1,δ(r1,r2). We formally define the farthest corner in the following theorem.

Definition 3 (Farthest Corner). Given a grid and its boundaries G =

{(g1min, g1max), . . . , (gmmin, gmmax)} and a hypersphere Sr1,δ(r1,r2) with center r1 and radius

δ(r1, r2). We define the farthest corner f of G with respect to r1 as follows:
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f[i] =


gimin if ri1 > gimax

gimax if ri1 < gimin

p[i] otherwise

Where pi is defined as follows:

p[i] =

g
i
min if |r1[i]− gimin| > |r1[i]− gimax|

gimax otherwise

Definition 4 (Farther neighbour). Given a center point r and a grid G, we say a point

p ∈ G is a farther neighbour of p′ ∈ G and write p′ >◦ p if and only if p and p′ differ

only in dimension α such that p[α] = f[α], p′[α] 6= f[α], and p[i] = p′[i] for all i 6= α.

Given r and G, if p′ >◦ p on α then δ(p, r) > δ(p′, r).

Proof. We analyze the sign of the difference ∆p,p′ = δ(p, r)− δ(p′, r). Note that

∆p,p′ = (p[α]− r[α])2 − (p′[α]− r[α])2

Also note that ∆p,p′ > 0 if and only if |p[α] − r[α]| > |p′[α] − r[α]|. We consider three

cases.

First, if r[α] > gαmax, by Definition 3, p[α] = gαmin and we have

|p[α]− r[α]| = r[α]− gαmax + gαmax − gαmin

Since p′ is in G, gαmin < p′[α] ≤ gαmax. Thus,

|p′[α]− r[α]| = r[α]− gαmax + gαmax − p′[α]

< r[α]− gαmax + gαmax − gαmin

< p[α]− r[α]|

Second, if r[α] < gαmin, by Definition 3, p[α] = gαmax and we have

|p[α]− r[α]| = gαmin − r[α] + gαmax − gαmin.
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Similarly, since p′ is in G, gαmin ≤ p′[α] < gαmax. Thus,

|p′[α]− r[α]| = gαmin − r[α] + p′[α]− gαmin

< gαmin − r[α] + gαmax − gαmin

< |p[α]− r[α]|

Third, suppose gαmin ≤ r[α] ≤ gαmax and gαmax − r[α] > r[α]− gαmax. By Definition 3,

p[α] = gαmax.

If gαmin ≤ p′[α] ≤ r[α], we have

|p′[α]− r[α]| = r[α]− p′[α]

≤ gαmin − p′[α]

< gαmax − r[α]

< |p[α]− r[α]|

If r[α] < p′[α] < gαmax, we have

|p′[α]− r[α]| = p′[α]− r[α]

< gαmax − r[α]

< |p[α]− r[α]|

The proof for the last case is similar to the previous case, thus omitted for brevity.

Given r and G, δ(f, r) ≥ δ(p′, r) for all points p′ ∈ G.

Proof. Proof is similar to the inductive proof of Lemma 4.2.2 and omitted for brevity.

Theorem 2. Given a gridG and a hypersphere Sr1,d, G completely lies within Sr1,d if and

only if δ(r1, f) ≤ d.

Proof. By Lemma 4.2.2, for all points p ∈ G, δ(r1, p) ≤ δ(r1, f). Thus, by definition of

hyperspehere, if δ(r1, f) ≤ d, all points of G resides in Sr1,d.

More efficient since it requires only one Euclidean distance calculation.

Algorithm 3 shows our implementation for checking if a grid lies inside a hypersphere.

On lines 3−9, we find the farthest corner f of the grid. On line 10, we check if the distance

δ(f, r1) is less than radius δ(r1, r2) of the hypersphere. That is, we make sure that G is
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Figure 4.3: A dataspace showing the farthest corner and closest point, with respect to rA,

of four grids by square and circular marker, respectively.

located completely inside Sr1,δ(r1,r2). We repeat the same procedure to find that if G lies

inside the hyperplane Sr2,δ(r1,r2). But this time f is calculated relative to r2. Note that our

method is fast and efficient, since it only requires one euclidean distance calculation.

Algorithm 3 Checks if a grid is located fully inside a hypersphere.
Input: G = {(g1min, g1max), . . . , (gmmin, gmmax)}: a grid and its boundaries,

r1, r2: denotes the two known points

Output: (True ∪ False): determines if a grid lies fully inside the hypersphere.

0: function GRIDINSPHERE(G, r1, r2)

1: f[i]← 0; i = 1, 2, . . . ,m

2: Build the hypersphere Sr1,δ(r1,r2)

3: for i = 1 to m do

4: if r1[i] > gimax then

5: f[i] = gimin

6: else if r1[i] < gimin then

7: f[i] = gimax

8: else

9: if |r1[i]− gimin| > |r1[i]− gimax| then f[i] = gimin else f[i] = gimax

10: if δ(f, r1) ≤ δ(r1, r2) then return True

11: return False
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Grid Outside of Hypersphere

Our approach to find that G lies completely outside of Sr1,δ(r1,r2) incorporates finding the

closest point on the surface of G relative to the center r1. This point includes all the

points on the surface of G including the corners. The central idea here is that if this point

is located outside Sr1,δ(r1,r2), it guarantees that entire G is located outside Sr1,δ(r1,r2). We

formally propose a means to find this closest point in the following theorem.

Definition 5 (Grid outside a hypersphere). Given a grid and its boundaries G =

{(g1min, g1max), . . . , (gmmin, gmmax)} and a hypersphere Sr1,δ(r1,r2) with center r1 and radius

δ(r1, r2). We define the closest point p on G with respect to r1 as follows:

p[i] =


gimax if r1[i] > gimax

gimin if r1[i] < gimin

r1[i] otherwise

Definition 6 (Closer neighbour). Given a center point r and a grid G, we say a point

p ∈ G is a closer neighbour of p′ ∈ G and write p′ <◦ p if and only if p and p′ differ only

in dimension α such that p[α] = p[α], p′[α] 6= p[α], and p[i] = p′[i] for all i 6= α.

Given r and G, if p′ <◦ p on α then δ(p, r) < δ(p′, r).

Proof. We analyze the sign of the difference ∆p,p′ = δ(p, r) − δ(p′, r). Note that, as

before, ∆p,p′ < 0 if and only if |p′[α]− r[α]| > |p[α]− r[α]|. We consider three cases.

First, if r[α] > gαmax, by Definition 3, p[α] = gαmax and we have

|p[α]− r[α]| = r[α]− gαmax

Since p′ is in G, gαmin < p′[α] ≤ gαmax. Thus,

|p′[α]− r[α]| = r[α]− gαmax + gαmax − p′[α]

> r[α]− gαmax

> |p[α]− r[α]|

Second, if r[α] < gαmin, by Definition 3, p[α] = gαmin and we have

|p[α]− r[α]| = gαmin − r[α].
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Similarly, since p′ is in G, gαmin ≤ p′[α] < gαmax. Thus,

|p′[α]− r[α]| = gαmin − r[α] + p′[α]− gαmin

> gαmin − r[α]

> |p[α]− r[α]|

Third, if gαmin ≤ r[α] ≤ gαmax, by Definition 3, p[α] = r[α]. Note that |p[α]−r[α]| = 0.

Since p′[α]! = r[α], |p′[α]− r[α]| > |p[α]− r[α]| holds.

Given r and G, δ(p, r) ≤ δ(p′, r) for all points p′ ∈ G.

Proof. Proof is similar to the inductive proof of Lemma 4.2.2 and omitted for brevity.

Theorem 3. Given a grid G and a hypersphere Sr1,d, G completely lies outside of Sr1,d if

and only if δ(r1,p) ≥ d.

Proof. By Lemma 4.2.2, for all points p ∈ G, δ(r1, p) ≥ δ(r1,p). Thus, by definition of

hyperspehere, if δ(r1,p) ≥ d, all points of G lies outside of Sr1,d.

Algorithm 4 shows our implementation to verify thatG lies completely outside Sr1,δ(r1,r2).

On lines 3 − 9, we find the point p on G that lies closest to r1. On line 10, we compare

δ(p, r1) with the radius δ(r1, r2) of Sr1,δ(r1,r2). The true output to this inequality indicates

that p is located inside Sr1,δ(r1,r2), thus we can conclude that G is not entirely located

outside Sr1,δ(r1,r2). On the other hand, a false value indicates that p is located outside

Sr1,δ(r1,r2) and hence, G is also positioned completely outside Sr1,δ(r1,r2).
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Algorithm 4 Checks if a grid is located fully outside a hypersphere.
Input: G = {(g1min, g1max), . . . , (gmmin, gmmax)}: a grid and its boundaries,

r1, r2: denotes the two known points

Output: (True ∪ False): determines if a grid lies fully outside the hypersphere.

0: function GRIDOUTOFSPHERE(G, r1, r2)

1: p[i]← 0; i = 1, 2, . . . ,m

2: Build the hypersphere Sr1,δ(r1,r2)

3: for i = 1 to m do

4: if r1[i] > gimax then

5: p[i] = gimax

6: else if r1[i] < gimin then

7: p[i] = gimin

8: else

9: p[i] = r1[i]

10: if δ(p, r1) ≤ δ(r1, r2) then return False

11: return True

Our technique to find the closest point and farthest corner of a grid is further exempli-

fied in fig. 4.3. This fig. shows four grids G1, G2, G3 and G4 with their respective closest

point and farthest corner marked on them by a circular and a square marker, respectively.

For G1, G2 and G3 closest point with respect to r1 is distinctly located on their corners.

However, closest point for G4 lies on the center of its width towards the left of r1. One

can verify that among all the grids farthest corner of G3 lies inside Sr1,δ(r1,r2) thus, only

G3 lies completely inside this circle. On the contrary, G1 and G1 are positioned outside

Sr1,δ(r1,r2) since, their respective closest points are located outside Sr1,δ(r1,r2).

4.3 Attack in Ranking Space

In section 4.2 we addressed a sub-problem in which an adversary had a set of known

samples and the euclidean distance relation function Fψ. We now formulate a strategy to

apply algorithm 1 in our problem domain.

We assume that an attacker has a set of known samples K and the rank relation func-

tion Fγ , then the aim of the attacker is to infer about the private attributes of the target
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record rE . Note that since, Fγ is a noisy variant of Fψ attacker cannot directly apply

algorithm 1 in this setting. That is, algorithm 1 is not resilient to noise because it removes

a grid immediately when a pair of known sample votes to prune it. As a result, attacker

might end up pruning wrong grids or in the worst case the entire search space without

inferring anything about rE . Thus, it becomes crucial for him to estimate a correct value

for V .

In algorithm 1, for each pair of known sample (rA, rB) we make three queries to the

rank relation function which are as follows: Fγ((rA, rE), (rB, rE)),Fγ((rA, rB), (rA, rE))

and Fγ((rA, rB), (rB, rE)). We use the set K to generate outputs of Fψ and Fγ for these

queries since we know the ranks and the private attribute values for each ri ∈ K. Then,

we make a comparison between the output of Fγ and Fψ to measure the amount of noise

in Fγ .

Definition 7 (Probability of error). Given the set of known samples rA, rB ∈ K, the target

point rE , the output of rank relation function Fγ and euclidean distance relation function

Fψ on the queriesFλ((rA, rE), (rB, rE)),Fλ((rA, rB), (rA, rE)) andFλ((rA, rB), (rB, rE))

and let E denote the number of mismatches between the output of Fγ and Fψ for these

queries, then, we define the probability of error PE in the output of Fγ as follows:

PE =
E

3 ·
(|K|

2

)
Where

(|K|
2

)
denotes the number of unique pairs of known samples.

In order to calculate the actual value of PE, we must know the output of euclidean

distance relation functionFψ for the queries mentioned in definition 7 including the target

point rE and the known points rA, rB ∈ K. In our case, though it this is not possible to

determine PE because finding the output of Fψ requires the knowledge of the distances

δ(rA, rE) and δ(rB, rE). That is, we don’t assume that the attacker knows the distances

between the known and target points. Thus, we try to estimate a value for PE using only

the set of known samples.

Let r1, r2, r3 ∈ K be our identifier for known samples. In definition 7, we initially

set rA = r1, rB = r2 and rE = r3, and calculate the value of PE. Note that number of

known samples in this case equal
(|K|−1

2

)
as we are assuming that one of the known point

is a target. We repeat the same process for all (r1, r2) ∈ K \ r3 by fixing rE = r3. This
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step repeats for a total of
(|K|−1

2

)
times. Since, rE can take |K| values we find a total of

|K|
(|K|−1

2

)
values of PE. Thus, the average value of probability of error Pavg is given by:

Pavg =
1

|K|
(|K|−1

2

) · |K|(|K|−1
2 )∑

i=1

PEi

Table 4.1: Distance matrix of five records from hospital dataset
r1 r2 r3 r4 r5

r1 0 35.0 70.4 24.9 28.5

r2 35.0 0 37.2 13.7 57.8

r3 70.4 37.2 0 46.0 93.1

r4 24.9 13.7 46.0 0 48.2

r5 28.5 57.8 93.1 48.2 0

(a) Euclidean distance matrix

R1 R2 R3 R4 R5

R1 0 2 3 1 1

R2 2 0 1 1 3

R3 3 1 0 2 4

R4 1 1 2 0 2

R5 1 3 4 2 0

(b) Rank distance matrix

As an example, consider table 4.1. The attacker has access to three records r2, r3

and r4, which comprises the set K, along with the rank relation matrix shown in ta-

ble 4.1(b). The goal of the attacker is to predict the private attributes of r5. Since, the

attacker knows that rank relations may have some noise as compared to the actual dis-

tance relations, he proceeds to calculate Pavg using only the set K. He initially sets

rA = r2, rB = r3 and rE = r4, then using the rank relation matrix from table 4.1(b)

Fγ((r2, r4), (r3, r4)) = −1, Fγ((r2, r3), (r2, r4)) = 0 and Fγ((r2, r3), (r3, r4)) = −1.

The attacker knows the attribute values for known records so he can generate euclidean

distance matrix for ri ∈ K as shown in table 4.1(a). Using this information he finds the

euclidean distance relations given by Fψ((r2, r4), (r3, r4)) = −1, Fψ((r2, r3), (r2, r4)) =

1 and Fψ((r2, r3), (r3, r4)) = −1. Since, there is one mismatch between outputs of Fγ
and Fψ, the value of PE = 1/3. Using similar calculations PE can be calculated for the

remaining values of rE (i.e., r2 and r3). One can determine that Pavg = 1/3 using all

values of PE.

Algorithm 4.1 is not resilient to noise in output of relation function. Using it with rank

relation function Fλ alone may lead to over-pruning, since Fλ are noisy. For example,

let the known pair (rA, rB) decides to prune a grid X while searching for the target rE .

Algorithm 4.1 will immediately prune X from the search space and proceed to the next

grid. This may be problematic since rank relations Fλ are noisy and thus, (rA, rB)’s
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decision to prune X could be wrong.

The noise in rank relations follow a randomized response model [20]. That is, we

can also alternatively generate Fλ by adding noise to euclidean distance relation function

using a randomized response model. In order to deal with this noise, we implement a

voting mechanism. For each grid, we count the the number of unique known pairs which

have voted in the favour of pruning that grid. If the vote for pruning a particular grid

is greater than or equal to an input voting threshold V then we prune that grid from the

search space. That is, we have a total of
(|K|

2

)
known pairs, if at least V of these known

pairs decide to prune a grid X then we remove it from the search space. We use the

following heuristic function to find the voting threshold V .

V = C · Pavg · 3 ·
(
|K| − 1

2

)
Where C ∈ (0, 1] denotes the normalization constant. Its value is dependant on the

correlation coefficient of the set of known samples. The above equation is multiplied by

3 owing to the fact that we are making three queries to the relation function per known

pair.

Algorithm 5 shows our implementation for pruning grids with a voting mechanism.

This algorithm is similar to Algorithm 1 in the sense that it also implements the obser-

vations 1,2,4 and 5, however, we don’t immediately prune a grid when an observation

is satisfied. Instead If a grid satisfies any of these observations we increment a voting

counter c and on line 12 we compare it with the voting threshold. A grid is pruned if a

c ≥ V , i.e. V or more pair of known samples votes to prune it from the search space.

After repeating this algorithm on all grids, the final output of the attack is a small subset

of grids that are unpruned, thus, may contain rE .
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Algorithm 5 Prunes a grid using relation function and known samples
Input: U : denotes the data space ,

G ⊆ U : a grid and its boundaries,

Fγ: rank relation function of the original data,

K = {r1, .., rt|ri ∈ U}: set of known samples,

E: an identifier to denote the target record rE ,

V : a voting threshold.

Output: (True ∪ False): determines whether a grid would be pruned or not.

0: function PRUNEGRIDONVOTE(G,Fγ, K,E, V )

1: c← 0

2: for each pair (rA, rB) ∈ K do

3: if Fγ((rA, rE), (rB, rE)) = −1 then

4: if GridInHalfSpace(G, rB, rA) then c← c+ 1

5: else if Fγ((rA, rE), (rB, rE)) = 1 then

6: if GridInHalfSpace(G, rA, rB) then c← c+ 1

7: for each (r1, r2) ∈ {(rA, rB), (rB, rA)} do

8: if Fγ((r1, r2), (r1, rE)) = −1 then

9: if GridInSphere(G, r1, r2) then c← c+ 1

10: else if Fγ((r1, r2), (r1, rE)) = 1 then

11: if GridOutOfSphere(G, r1, r2) then c← c+ 1

12: if c > V then return True

13: return False

4.4 Multi-granularity grid pruning

In algorithm 1 we assumed that the data space is divided into m-dimensional uniform

grids. Decreasing the size of the grid would mean an increase in the total number of

grids, and hence, it would result in a finer granularity. This would increase the efficiency

of our attack since, we would be pruning more region from the data space. However, this

approach requires processing higher number of grids and thus, leads to a higher execution

time.

To improve the performance of our attack, we propose a multi-granularity grid based
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Figure 4.4: A binary tree structure containing the remaining grids, grey grids are the ones

removed from the search space (and the tree).

approach. We initially treat the entire universe U as a single grid and then iteratively keep

on dividing the grid across its dimensions until a suitable granularity level is achieved.

The main idea here is to prune larger grids from the search space for the purpose of de-

creasing the total amount of grids processed. Note that our algorithms (2, 3 and 4) for

checking the location of a grid relative to a hypersphere and a hyperplane are indepen-

dent of the size of a grid since, they only require corners of a grid to perform correctly.

Thus, pruning larger grids from the search space increases the performance of our attack

algorithm.

We present our multi-granularity grid based pruning technique in Algorithm 6. The

inputs to this algorithm are similar to the inputs of Algorithm 1 apart from an additional

binary tree structure denoted by btree and an identifier MinLen to denote the minimum

length of a grid. MinLen is used to determine the granularity of the grids across all the

dimensions. That is, a grid is repeatedly divided into half across its ith dimension until the

minimum grid length across ith dimension equals MinLen[i].

Our algorithm works in recursive manner. Initially, node of the binary tree, denoted

by node, is assigned the entire universe in a form of a m-dimensional grid. On lines 1−2,

we fetch the grid G from the current node and get the depth of G in the tree. Let the

depth of the G be denoted by dim. We proceed to divide G equally across dim into two

grids namely, GA and GB. On line 4, we make sure that GAs’ length across dim has not

reached the allowed minimum length, if this is the case we continue. Note that since, GA

and GB have equal lengths for dim checking the length of one of the grid suffices here.

On lines 5− 7, we run our Algorithm 1 to check if GA would be pruned from the search

space. if GA is not pruned it is inserted as the left child of the node otherwise, we prune
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it from the search space. The same process is repeated for GB, it is inserted as the right

child of the node only if it is not removed from the search space. On lines 7 and 10, we

recursively call our algorithm with the newly created left and right child nodes. In the

next iteration, we divide GA and GB across dim+1 and same process repeats for the new

grids. Our algorithm terminates only when the length of the grids, belonging to the leaf

nodes, is reduced to MinLen.

Algorithm 6 Initiates the attack algorithm by utilizing the binary tree structure.
Input: U : denotes the data space ,

btree: denotes the binary tree data structure,

node ∈ btree.nodes: a node in binary tree containing a grid,

Fγ: rank relations of the original data,

K = {r1, .., rt|ri ∈ U}: set of known samples,

E: an identifier to denote the target record rE ,

V : a voting threshold,

MinLen: minimum grid length allowed.

Output: returns a binary tree with remaining grids having a granularity of at least

MinLen.

0: function INSERTBTREE(node)

1: G = node.boundaries

2: dim = node.depth mod m

3: Create grids GA and GB by dividing grid G w.r.t. dim

4: if len(GA[dim]) < MinLen[dim] then return

5: if ¬PruneGridOnV ote(GA,Fγ, K,E, V ) then

6: node.insertLeft(GA)

7: InsertBTree(node.getLeftNode)

8: if ¬PruneGridOnV ote(GB,Fγ, K,E, V ) then

9: node.insertRight(GB)

10: InsertBTree(node.getRightNode)

Our multi-granularity grid based pruning approach is exemplified in Figure 4.4. The

database has two private attribute A1 and A2 and their domains Ω(A1) = Ω(A1) = 0 −

100. The figure present the grids labeled by their respective boundaries. The root grid (top

most) comprises the entire data space. The two grids at depth 1 are formed by dividing
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the root grid across the A1 dimension. These grids are further split into two by dividing

them across the A2 dimension, as evident at depth 2. Note that the greyed out grids are

the ones which are pruned from the search space and they are not inserted in the tree. The

process of splitting the grids continue until a preset granularity level is reached.
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Chapter 5

Experimental Evaluation

In order to demonstrate efficiency of our attack, we test our algorithm on one real-

world and two synthetic datasets. We have full control over the ranking function in all the

three datasets.

One practical application of our attack is as follows. At a particular university, by

the end of the semester, instructor after grading all the homeworks, exams and projects

publishes student rankings based on their accumulative grade. Though student ranking

is not published in all the universities, some still prefer this amount of disclosure. The

attacker in this case is a student who is aware of his and a few close friends’ grades in

all the assessments and this composes his set of known samples. The aim of the attacker

is then, to infer the grades of a remaining students in all the assessments by utilizing the

set of known samples and the ranking information. Since other students are not in his

social circle, he may not be able to ask them directly. Inspired by this scenario, we utilize

one real-world dataset and two synthetic datasets, with 8 private attributes each, in our

experiments.

Students dataset: We collected anonymized data of 105 students from a undergrad-

uate level course containing grades of student in home works, midterm exam, project and

final exam. Each record has 8 private attributes and 1 public attribute. Ranking of the stu-

dents is determined by the weighted average function, from equation ??, with the weights

for each private attribute set to 0.125. Table 5.1 shows the domain of each private attribute

in the dataset.

Synthetic dataset: We generated two synthetic datasets, containing 100 records each,

from a Gaussian distribution. Each record has 8 private and 1 public attribute. We differ-

entiate the two datasets based on their correlation coefficient among the private attributes.
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Table 5.1: Private attributes of students data with their respective domains

Private attribute Ω(Ai)

Homework 1 0− 5

Final 0− 35

Midterm 0− 30

Homework 2 0− 5

Homework 3 0− 5

Homework 4 0− 5

Project Presentation 0− 5

Project Report 0− 10

One dataset has a high average correlation coefficient of 0.93, whereas the other has a low

correlation coefficient given by 0.38. We utilize ranking function from equation 2.1 with

weight for each private attribute set to 0.125. Both datasets have a similar a domain of all

the private attributes given by Ω(Ai) = (0− 100).

We run our grid-based algorithm from section 4.4 on these three datasets. We divide

the entire data space such that each dimension is split into 8 parts. Thus, we have grid

volume of 1.95 for students dataset and approximately 596M for synthetic dataset. We

believe that with such granularity of grid it is reasonable to assume that target can be

located efficiently considering the data space is large. With such a grid volume, we have a

total of 16M uniform grids for all datasets. However, due to our efficient multi-granularity

implementation, we process fairly lower number of grids.

5.1 Expected distance per dimension

We measure the performance of our attack using the following quantitative metrics.

The transcriptA(U,Fγ, K,E, V ) = U
′ is used to denote the attack, where (U,Fλ, K,E, V )

are the input parameters as explained in algorithm 6 and U ′ contains the remaining grids

after attack algorithm terminates. In other words, U ′ represents the portion of the search

space where the attack claims target record rE is located.

Our first metric is the expected distance that captures the error of our estimation for

each dimension. The output of the attack U ′ contains the remaining grids after pruning
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U . We use U ′ to construct a histogram which contains the frequency information of the

grid boundaries across each dimension. Let the grid with the highest frequency across

each dimension be denoted by T and let f [i] denote its frequency across ith dimension.

The attacker assumes that target point rE is located inside T . To calculate the expected

distance per dimension from rE , we use the formula:

Expecteddistance[i] =
f [i]

# of grids in U ′
·
∣∣µ(T [i])− rE[i]

∣∣
where i = 1, . . . ,m and µ(T [i]) denotes the center of grid boundary across the ith

dimension. We compare the results of our attack with the baseline knowledge that can be

inferred about the target record using the set of known points. Given the known points

rA ∈ K, we define the baseline for expected distance per dimension BE as follows:

BE[i] =

∑
rA∈K

∣∣rE[i]− rA[i]
∣∣

|K|

5.2 Overall distance

Our second metric is the overall distance. It aims to measure the normalized L2-norm

between our estimation and the target record. Given the grid T , target record rE and

the maximum distance allowed by the boundaries of the data space η(U), we define the

overall distance in the following expression:

dist =
δ(µ(T ), rE)

η(U)

Where µ(T ) denotes the central point of the grid T . Given the known points rA ∈ K,

our baseline for overall distance BO is given by the following equation:

BO =

∑
rA∈K δ(rA, rE)

η(U) · |K|
Note that we normalize the actual distance and its baseline by η(U) so that results

remain comparable across multiple datasets.
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5.3 Performance Ratio

It measures the performance of our multi-granularity grid based approach by generat-

ing a ratio of number of grids processed by our optimized approach to the number grids

processed by uniform grid approach. We set the minimum length MinLen[i] of our grid

for each dimension to range(Ω(Ai))/8 i.e., once our attack terminates we get grids that

have granularity of range(Ω(Ai))/8 for i = 1, . . . ,m. On the other hand, the uniform

grids approach with similar granularity has a total of approximately 16M grids. Given the

number of grids processed PG after our attack terminates, we define the ratio as follows:

Ratio =
PG

# of uniform grids

A lower performance ratio indicates our algorithm has processed lower number of

grids as compared to the uniform grid approach.

5.4 Results and Discussion

The most fascinating result of our attack is how the overall distance decreases as we

increase the number of known samples. This can be explained by the fact that as we

increase the number of known samples this leads to pruning more grids from the data

space. And once more grids are removed target record can be precisely located inside

the data space. Figure 5.1 shows the overall distance measured for our three datsets. Our

attack achieves a distance of less than 0.15 with 6 or more samples for the high correlated

and students dataset. Even with 3 samples, we achieve a distance of less than 0.18 for both

the datasets. Taking into account that 3-6 samples can be easily obtained (e.g., attackers’

record himself and 2-5 of his friends), we can say that our attack is realistic and practical.

The results for overall distance also suggest that we perform best for the highly corre-

lated data and worst for the low correlated data. For example, the value of distance with

K=10 for high correlated, students and low correlated datasets is given by 0.07, 0.13 and

0.27, respectively. The reason for this anomaly can be explained as follows: the amount

of differences in the output of Fγ and Fψ is highest for the low correlated data, and thus

it translates to a higher amount of probability of error PE. On the other hand, the value

of PE for high correlated data is lowest followed by the students data. When we compare
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the distance against the baseline with K=10, students dataset has the highest difference

of 0.21. This is because our baseline may increase or decrease depending on the location

of known point relative to the target point. An increase is expected if the known point is

positioned farther away from the target point. However, adding this new known to our

attack after 6 or more samples may only help in pruning few more grids since, most of the

grids are already pruned with known samples 3-6. Thus, this known has minimal affect

on the distance.
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(b) Students dataset
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(c) Low correlated dataset

Figure 5.1: Overall distance for K = 3, 4, 6, 8, 10

In Figure 5.2, we observe the expected distance per dimension for the final and midterm

attribute of student dataset for the same experiments as above. Both these attributes are

not varying much as we increase the number of knowns. These results reflect the re-

sults shown in Figure 5.1(a) since, expected distance is also calculated by assuming target

point is located inside the top grid T . The interesting outcome of this graph is that we are

producing lower expected distance for the final as compared to the midterm. For exam-

ple, with K = 6 the value of expected distance for final and midterm is 0.09 and 0.12,

respectively. The final attribute has the highest weightage in the ranking function since

domain of final is Ω(A2) = 0 − 35, which also means that ranking of the records are

primarily dictated by the final scores. As a result, expected distance is found to be lower
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for attributes having a higher weightage in the ranking function.
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(a) Final Exam
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(b) Midterm Exam

Figure 5.2: Expected distance per dimension for the students dataset

The performance of a our algorithm is demonstrated in Figure 5.3. It is evident from

the figure that for all the three datasets we are always processing lower amount of grids

then we would otherwise in the case of uniform grids approach. For the high and low

correlated datasets with K = 3 the ratio is higher indicating that we are processing higher

number of grids. This can be explained by the fact that generally with lower number of

known samples we are not able to prune larger volume grids and thus it leads processing

a higher number of smaller volume grids. Whereas, as we increase the number of known

samples we prune more and more larger volume grids that results in processing lower

number of grids in total.

In Figure 5.3, student dataset is not following a similar trend. For example, the ratio

for K = 10 is higher than K = 3 showing that number of grids processed for K =

10 is higher then to the number of grids processed for K = 3. The number of grids

processed is also dependent on the location of known samples relative to the target point.

We may also prune large volume grids provided the following conditions are met: (i)

the known pair (rA, rB) is located close together such that δ(rA, rB) is small, then if

observation 5 holds all the grids completely outside the small hypersphere are pruned. (ii)

the known pair (rA, rB) is distant such that δ(rA, rB) is as large as possible. In this case, if

observation 4 holds all the grids completely inside the large hypersphere are pruned from

the search space. Since, we randomly select the target and the set of known samples,

we may end up pruning larger grids for lower number of known samples if the above

mentioned conditions are satisfied.
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Figure 5.3: Ratio of processed grids to the uniform grids for the three datasets

On the other hand, we may prune small volume of dataspace depending on the location

of the known samples and the target point. Consider the scenario in which pairs of known

samples (rA, rB) ∈ K are located close together, whereas target point is located farther

away from them. In this case each hypersphere centered on a known point rA will have

a small radius since δ(rA, rB) is small. Then, if observation 4 holds we would prune

only the grids contained completely inside this hypersphere. Thus, only small volume of

dataspace would be pruned which will result in limited to no inference about the private

attributes.

We make a comparison of our attack with the state of the art algorithm Q-point [8]. We

adjusted Q-point in way to make a fair comparison between the two algorithms. Firstly,

we set the top-K tuples to the number of records in the dataset. That is, each query to

Q-point returned all the tuples in the dataset ranked according to the ranking function

defined in the preliminaries. Secondly, we limited the number of queries generated to the

domain length of a particular private attribute that needs to be attacked. We discretized

our datasets in such a way that each private attribute can take one of the eight values.

Finally, we used our expected distance metric to compare the results generated by both

of the algorithms. In Figure 5.4, we show the results generated for student and high

correlated datasets. We make a comparison between 4 private attributes and the expected

distance reveals that our algorithm outperforms Q-point for all the attributes.
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Figure 5.4: A comparison between the results of our algorithm and Q-point

In Figure 5.5, we demonstrate the overall distance by varying the number of private

attributes for the student and the high correlated dataset. The results show that distance

doesn’t vary much as the number of private attributes are increased. For instance, distance

has a value of 0.13 with the number of private attributes set to 3 and 8, respectively for

the student dataset. Similar trend is also observed for the high correlated dataset.
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Figure 5.5: Varying the number of private attributes for the two datasets
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Chapter 6

Conclusion and Future Work

In this thesis, we formulated a technique to infer about the private attributes of an

unknown record assuming that we know about the private attribute values of few records

in that database along with the published rankings of all the tuples. Our technique is

based on a solving a simpler sub-problem in which an adversary has access to few known

samples and the euclidean distance relations of all the tuples in the database. We made a

comparison between rank relation and euclidean distance relations to estimate the amount

of noise in rankings. To make our attack on rankings resilient to noise we introduced a vot-

ing mechanism which was shown to effectively combat noise. In addition, we enhanced

the performance of our attack when dealing with high dimensional data by developing a

multi-granularity grid based algorithm.

Our results show that with moderate to low noise in rankings our attack can estimate

private attributes with a high accuracy using only few known samples. For example, we

achieve a normalized distance, with respect to a specific target record, of less then 0.18

using only 3 known samples. Moreover, our results show the performance of our multi-

granularity grid based approach as opposed to the naive uniform grid approach. For all

the three datasets, we process lower number of grids then we would have otherwise in the

case of uniform grid approach.

In future work, we plan to study potential defense approaches against our attack

such as K-ananymity, differentail privacy and fairness aware ranking. Some of these

approaches may provide resilience against our attack, however, how much resilience they

provide must be theoretically and empirically studied. In addition, we must consider the

trade-off between their overall utility degradation versus how much attack resilience they

will provide.
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We can also consider dynamic attacks in which, if we discover a target record with

very high confidence, we can add that to our list of known samples and in the next attack,

treat that record also as a known sample. This may help in locating the next target point

with high accuracy. Moreover, our attack can also be extended to trajectories dataset such

as vehicle gps trajectory and character trajectory. In this case, using our are set of known

samples we will try to predict the target trajectory and after some post-processing we may

deduce something more conclusive.
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Appendix A

Tabular results of evaluations on each

dataset

Table A.1: Evaluations of high correlated dataset

Knowns Voting threshold Runtime (sec)
Total uniform

grids
Processed grids Ratio Overall distance Baseline

3 1 2819.9 16777216 11931361 0.711 0.186 0.234

4 2 4302.4 16777216 8673090 0.5169 0.124 0.221

6 2 4884.2 16777216 4187478 0.249 0.126 0.224

8 3 1731.1 16777216 932737 0.0555 0.084 0.217

10 7 5376.7 16777216 1644230 0.098 0.074 0.215

Table A.2: Evaluations of student dataset

Knowns Voting threshold Runtime (sec)
Total uniform

grids
Processed grids Ratio Overall distance Baseline

3 1 1563.614 16777216 5677022 0.338 0.172 0.293

4 2 2921.47 16777216 5575661 0.332 0.162 0.300

6 8 13272.867 16777216 10375452 0.618 0.137 0.320

8 11 18195.019 16777216 7524162 0.448 0.135 0.356

10 16 24636.845 16777216 6479404 0.3862 0.134 0.343
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Table A.3: Evaluations of low correlated dataset

Knowns Voting threshold Runtime (sec)
Total uniform

grids
Processed grids Ratio Overall distance Baseline

3 2 3779.2 16777216 15778529 0.9404 0.380 0.423

4 2 3687.1 16777216 7610548 0.4536 0.313 0.400

6 4 4192.92 16777216 3526026 0.2101 0.297 0.384

8 5 2395.62 16777216 1259020 0.075 0.285 0.394

10 10 9496.5 16777216 2920280 0.174 0.279 0.391
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