Sohouli, A. and Yıldız, Mehmet and Suleman, A. (2018) Efficient strategies for reliability-based design optimization of variable stiffness composite structures. Structural and Multidisciplinary Optimization, 57 (2). pp. 689-704. ISSN 1615-147X (Print) 1615-1488 (Online)
Full text not available from this repository. (Request a copy)
Official URL: http://dx.doi.org/10.1007/s00158-017-1771-8
Abstract
This study investigates efficient design optimization frameworks for composite structures with uncertainties related to material properties and loading. The integration of two decoupled reliability-based design optimization methodologies with a decoupled discrete material optimization is proposed to determine material and fiber orientation for three-dimensional composite structures. First, a deterministic and decoupled discrete material optimization is used for baseline comparison. The objective is to minimize the cost of composite structures with the design variables comprising of the piecewise patch orientations and material properties of the fiber reinforced composites. The reliability-based design optimization includes a hybrid method, and also the sequential optimization and reliability assessment method. In the sequential optimization and reliability assessment method, the inverse reliability analysis is evaluated using a stochastic response surface method and a first order reliability approach. Comparing the methods based on the optimal material and fiber orientations, the uncertainties in loads and material properties lead to different optimal layouts compared to the deterministic solutions. The numerical results also reveal that the hybrid method applied in reliability based designs results in negligible additional computational cost.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Decoupled discrete material optimization; Reliability-based design optimization; Sequential optimization and reliability assessment; Variable stiffness composite laminates |
Divisions: | Faculty of Engineering and Natural Sciences > Academic programs > Materials Science & Eng. Faculty of Engineering and Natural Sciences > Academic programs > Manufacturing Systems Eng. Faculty of Engineering and Natural Sciences |
Depositing User: | Mehmet Yıldız |
Date Deposited: | 13 Feb 2018 15:58 |
Last Modified: | 16 May 2023 16:01 |
URI: | https://research.sabanciuniv.edu/id/eprint/34232 |