Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes

Jahangiri, Sassan and Aravi, İpek and Işıkel Şanlı, Lale and Menceloğlu, Yusuf Z. and Özden Yenigün, Elif (2018) Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes. Polymers for Advanced Technologies, 29 (1). pp. 594-602. ISSN 1042-7147 (Print) 1099-1581 (Online)

Full text not available from this repository. (Request a copy)

Abstract

Phosphoric acid (PA)-doped polybenzimidazole (PBI) proton exchange membranes have received attention because of their good mechanical properties, moderate gas permeability, and superior proton conductivity under high temperature operation. Among PBI-based film membranes, nanofibrous membranes withstand to higher strain because of strongly oriented polymer chains while exhibiting higher specific surface area with increased number of proton-conducting sites. In this study, PBI electrospun nanofibers were produced and doped with PA to operate as high temperature proton exchange membrane, while changes in proton conductivity and morphologies were monitored. Proton conductive PBI nanofiber membranes by using the process parameters of 15kV and 100L/h at 15wt% PBI/dimethylacetamide polymer concentration were prepared by varying PA doping time as 24, 48, 72, and 96hours. The morphological changes associated with PA doping addressed that acid doping significantly caused swelling and 2-fold increase in mean fiber diameter. Tensile strength of the membranes is found to be increased by doping level, whereas the strain at break (15%) decreased because of the brittle nature of H-bond network. 72 hour doped PBI membranes demonstrated highest proton conductivity whereas the decrease on conductivity for 96-hour doped PBI membranes, which could be attributed to the morphological changes due to H-bond network and acid leaking, was noted. Overall, the results suggested that of 72-hour doped PBI membranes with proton conductivity of 123mS/cm could be a potential candidate for proton exchange membrane fuel cell.
Item Type: Article
Uncontrolled Keywords: fuel cell; high-temperature proton exchange membrane; nanofiber; polybenzimidazole; proton conductivity
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Materials Science & Eng.
Faculty of Engineering and Natural Sciences
Faculty of Engineering and Natural Sciences > Academic programs > Manufacturing Systems Eng.
Depositing User: Yusuf Z. Menceloğlu
Date Deposited: 16 Jan 2018 14:31
Last Modified: 20 May 2023 21:42
URI: https://research.sabanciuniv.edu/id/eprint/34184

Actions (login required)

View Item
View Item