Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7

Pandey, Ashish and Gürbüz, Yaşar and Özgüz, Volkan Hüsnü and Kolkar Mohammed, Javed Hussain Niazi and Qureshi, Anjum (2017) Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosensors and Bioelectronics, 91 . pp. 225-231. ISSN 0956-5663 (Print) 1873-4235 (Online)

Full text not available from this repository. (Request a copy)


E. coil O157:H7 is an enterohemorrhagic bacteria responsible for serious foodborne outbreaks that causes diarrhoea, fever and vomiting in humans. Recent foodborne E. coli outbreaks has left a serious concern to public health. Therefore, there is an increasing demand for a simple, rapid and sensitive method for pathogen detection in contaminated foods. In this study, we developed a label-free electrical biosensor interfaced with graphene for sensitive detection of pathogenic bacteria. This biosensor was fabricated by interfacing graphene with interdigitated microelectrodes of capacitors that were biofunctionalized with E. coli O157:H7 specific antibodies for sensitive pathogenic bacteria detection. Here, graphene nanostructures on the sensor surface provided superior chemical properties such as high carrier mobility and biocompatibility with antibodies and bacteria. The sensors transduced the signal based on changes in dielectric properties (capacitance) through (i) polarization of captured cell-surface charges, (ii) cells' internal bioactivity, cell-wall's electronegativity or dipole moment and their relaxation and (iv) charge carrier mobility of graphene that modulated the electrical properties once the pathogenic E. coil O157:H7 captured on the sensor surface. Sensitive capacitance changes thus observed with graphene based capacitors were specific to E. coli O157:H7 strain with a sensitivity as low as 10-100 cells/ml. The proposed graphene based electrical biosensor provided advantages of speed, sensitivity, specificity and in-situ bacterial detection with no chemical mediators, represents a versatile approach for detection of a wide variety of other pathogens.
Item Type: Article
Uncontrolled Keywords: Biosensors; Graphene; Dielectric; Biochip; Foodborne pathogen; E. coli O157:H7
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TD Environmental technology. Sanitary engineering
Q Science > QR Microbiology
Divisions: Sabancı University Nanotechnology Research and Application Center
Faculty of Engineering and Natural Sciences > Academic programs > Electronics
Faculty of Engineering and Natural Sciences
Depositing User: Javed Kolkar
Date Deposited: 19 Aug 2017 17:17
Last Modified: 22 May 2019 13:53

Actions (login required)

View Item
View Item