Pool boiling heat transfer characteristics of inclined pHEMA-coated surfaces

Khalili Sadaghiani, Abdolali and Motezakker, Ahmad Reza and Özpınar, Alsan Volkan and Özaydın İnce, Gözde and Koşar, Ali (2017) Pool boiling heat transfer characteristics of inclined pHEMA-coated surfaces. Journal of Heat Transfer, 139 (11). ISSN 0022-1481 (Print) 1528-8943 (Online) Published Online First http://dx.doi.org/10.1115/1.4036651

Warning
There is a more recent version of this item available.
Full text not available from this repository. (Request a copy)

Abstract

New requirements for heat exchangers offered pool boiling heat transfer on structured and coated surfaces as one of the promising methods for effective heat removal. In this study, pool boiling experiments were conducted on polyhydroxyethylmethacrylate (pHEMA)-coated surfaces to investigate the effect of surface orientation on bubble dynamics and nucleate boiling heat transfer. pHEMA coatings with thicknesses of 50, 100, and 200 nm were deposited using the initiated chemical deposition (iCVD) method. De-ionized water was used as the working fluid. Experiments were performed on horizontal and inclined surfaces (inclination angles of 10 deg, 30 deg, 50 deg, and 70 deg) under the constant heat flux (ranging from 10 to 80 kW/m2) boundary condition. Obtained results were compared to their plain surface counterparts, and heat transfer enhancements were observed. Accordingly, it was observed that the bubble departure phenomenon was affected by heat flux and wall superheat on bare silicon surfaces, while the supply path of vapor altered the bubble departure process on pHEMA-coated surfaces. Furthermore, the surface orientation played a major role on bubble dynamics and could be considered as a mechanism for fast vapor removal from surfaces. Bubble coalescence and liquid replenishment on coated surfaces had a promising effect on heat transfer coefficient enhancement on coated surfaces. For horizontal surfaces, a maximum enhancement of 25% relative to the bare surface was achieved, while the maximum enhancement was 105% for the inclined coated surface under the optimum condition. iCVD was proven to be a practical method for coating surfaces for boiling heat transfer applications due to the obtained promising results.
Item Type: Article
Subjects: T Technology > TP Chemical technology
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Mechatronics
Faculty of Engineering and Natural Sciences > Academic programs > Materials Science & Eng.
Faculty of Engineering and Natural Sciences
Depositing User: Ali Koşar
Date Deposited: 07 Aug 2017 11:42
Last Modified: 03 Sep 2019 15:18
URI: https://research.sabanciuniv.edu/id/eprint/32556

Available Versions of this Item

Actions (login required)

View Item
View Item