Farhanieh, Omid and Sahafi, Ali and Bardhan Roy, Rupak and Ergun, Arif Sanli and Bozkurt, Ayhan (2017) Integrated HIFU drive system on a chip for CMUT-based catheter ablation system. IEEE Transactions on Biomedical Circuits and Systems, 11 (3). pp. 534-546. ISSN 1932-4545 (Print) 1940-9990 (Online)
PDF
07882666.pdf
Restricted to Registered users only
Download (4MB) | Request a copy
07882666.pdf
Restricted to Registered users only
Download (4MB) | Request a copy
Official URL: http://dx.doi.org/10.1109/TBCAS.2017.2649942
Abstract
Conventional High Intensity Focused Ultrasound (HIFU) is a therapeutic modality which is extracorporeally administered. In applications where a relatively small HIFU lesion is required, an intravascular HIFU probe can be deployed to the ablation site. In this paper, we demonstrate the design and implementation a fully integrated HIFU drive system on a chip to be placed on a 6 Fr catheter probe. An 8-element capacitive micromachined ultrasound transducer (CMUT) ring array of 2 mm diameter has been used as the ultrasound source. The driver chip is fabricated in 0.35 μm AMS high-voltage CMOS technology and comprises eight continuous-wave (CW) high-voltage CMUT drivers (10.9 ns and 9.4 ns rise and fall times at 20 Vpp output into a 15 pF), an eight-channel digital beamformer (8–12 MHz output frequency with 11.25∘ phase accuracy) and a phase locked loop with an integrated VCO as a tunable clock source (128–192 MHz). The chip occupies 1.85 × 1.8 mm2 area including input and output (I/O) pads. When the transducer array is immersed in sunflower oil and driven by the IC with eight 20 Vpp CW pulses at 10 MHz, real-time thermal images of the HIFU beam indicate that the focal temperature rises by 16.8 ∘C in 11 seconds. Each HV driver consumes around 67 mW of power when driving the CMUT array at 10 MHz, which adds up to 560 mW for the whole chip. FEM based analysis reveals that the outer surface temperature of the catheter is expected to remain below the 42 ∘C tissue damage limit during therapy.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Capacitive micromachined ultrasound transducer (CMUT), catheter ablation system, continuous wave high-voltage driver, high Intensity Focused Ultrasonic (HIFU), phase locked loop, real-time HIFU thermal image |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1-4661 Electrical engineering. Electronics Nuclear engineering R Medicine > RD Surgery |
Divisions: | Faculty of Engineering and Natural Sciences > Academic programs > Electronics Faculty of Engineering and Natural Sciences |
Depositing User: | Rupak Bardhan Roy |
Date Deposited: | 12 Jun 2017 15:33 |
Last Modified: | 26 Apr 2022 09:44 |
URI: | https://research.sabanciuniv.edu/id/eprint/32249 |