On self-dual double negacirculant codes

Alahmadi, Adel and Güneri, Cem and Özkaya, Buket and Shoaib, Hatoon and Sole, Patrick (2017) On self-dual double negacirculant codes. Discrete Applied Mathematics, 222 . pp. 205-212. ISSN 0166-218X (Print) 1872-6771 (Online)

Full text not available from this repository. (Request a copy)

Abstract

Double negacirculant (DN) codes are the analogues in odd characteristic of double circulant codes. Self-dual DN codes are shown to have a transitive automorphism group. Exact counting formulae are derived for DN codes. The special class of length a power of two is studied by means of Dickson polynomials, and is shown to contain families of codes with relative distances satisfying a modified Varshamov-Gilbert bound. This gives an alternative, and effective proof of the result of Chepyzhov, that there are families of quasi twisted codes above Varshamov-Gilbert.
Item Type: Article
Uncontrolled Keywords: Quasi-twisted codes; Dickson polynomials; Varshamov-Gilbert bound
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Engineering and Natural Sciences > Basic Sciences > Mathematics
Faculty of Engineering and Natural Sciences
Depositing User: Cem Güneri
Date Deposited: 09 May 2017 14:58
Last Modified: 12 May 2017 11:53
URI: https://research.sabanciuniv.edu/id/eprint/31316

Actions (login required)

View Item
View Item