Delgado Saa, Jaime Fernando and De Pesters, Adriana and Çetin, Müjdat (2016) Asynchronous decoding of finger movements from ECoG signals using long-range dependencies conditional random fields. Journal of Neural Engineering, 13 (3). ISSN 1741-2560 (Print) 1741-2552 (Online)
This is the latest version of this item.
PDF
delgado_JNE16.pdf
Restricted to Registered users only
Download (642kB) | Request a copy
delgado_JNE16.pdf
Restricted to Registered users only
Download (642kB) | Request a copy
Official URL: http://dx.doi.org/10.1088/1741-2560/13/3/036017
Abstract
Objective. In this work we propose the use of conditional random fields with long-range dependencies for the classification of finger movements from electrocorticographic recordings. Approach. The proposed method uses long-range dependencies taking into consideration time-lags between the brain activity and the execution of the motor task. In addition, the proposed method models the dynamics of the task executed by the subject and uses information about these dynamics as prior information during the classification stage. Main results. The results show that incorporating temporal information about the executed task as well as incorporating long-range dependencies between the brain signals and the labels effectively increases the system's classification performance compared to methods in the state of art. Significance. The method proposed in this work makes use of probabilistic graphical models to incorporate temporal information in the classification of finger movements from electrocorticographic recordings. The proposed method highlights the importance of including prior information about the task that the subjects execute. As the results show, the combination of these two features effectively produce a significant improvement of the system's classification performance.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Brain-computer interfaces; ECoG; synchronous classification; temporal dynamics; probabilistic graphical models |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering Q Science > QP Physiology > QP1-(981) Physiology > QP351-495 Neurophysiology and neuropsychology |
Divisions: | Faculty of Engineering and Natural Sciences > Academic programs > Electronics Faculty of Engineering and Natural Sciences |
Depositing User: | Müjdat Çetin |
Date Deposited: | 12 Nov 2016 13:45 |
Last Modified: | 22 May 2019 13:43 |
URI: | https://research.sabanciuniv.edu/id/eprint/30316 |
Available Versions of this Item
-
Asynchronous decoding of finger movements from ECoG signals using long-range dependencies through conditional random fields. (deposited 24 Dec 2015 16:33)
- Asynchronous decoding of finger movements from ECoG signals using long-range dependencies conditional random fields. (deposited 12 Nov 2016 13:45) [Currently Displayed]