Asymptotics of spectral gaps of 1D Dirac operator whose potential is a linear combination of two exponential terms

Warning The system is temporarily closed to updates for reporting purpose.

Anahtarcı, Berkay and Djakov, Plamen Borissov (2015) Asymptotics of spectral gaps of 1D Dirac operator whose potential is a linear combination of two exponential terms. Asymptotic Analysis, 92 (1-2). pp. 141-160. ISSN 0921-7134 (Print) 1875-8576 (Online)

Full text not available from this repository. (Request a copy)

Abstract

The one-dimensional Dirac operator L=i((1)(0) (-1)(0))d/dx + ((0)(Q(x)) (0) P-(x)), P,Q is an element of L-2 ([0, pi]), consider on [0, pi] with periodic or antiperiodic boundary conditions, has discrete spectra. For large enough |n|, n is an element of Z, there are two (counted with multiplicity) eigenvalues lambda(-)(n), lambda(+)(n) (periodic if n is even, or antiperiodic if n is odd) such that |lambda(+/-)(n) - n| < 1/2. We study the asymptotics of spectral gaps gamma(n) = lambda(+)(n) - lambda(-)(n) in the case P(x) = ae(-2ix) + Ae(2ix), Q(x) = be(-2ix) + Be-2ix, where a, A, b, B are any complex numbers. We show, for large enough m, that gamma +/- 2m = 0 and gamma 2m+1 = +/- 2 root(Ab)(m)(aB)(m+1)/4(2m)(m!)(2) [1+O(log(2) m/m(2))], gamma-(2m+1) = +/- 2 root(Ab)(m+1)(aB)(m)/4(2m)(m!)(2) [1+O(log(2) m/m(2))].
Item Type: Article
Uncontrolled Keywords: 1D Dirac operator; spectral gap asymptotics
Divisions: Faculty of Engineering and Natural Sciences > Basic Sciences > Mathematics
Faculty of Engineering and Natural Sciences
Depositing User: Plamen Borissov Djakov
Date Deposited: 12 Dec 2015 22:11
Last Modified: 23 Aug 2019 15:38
URI: https://research.sabanciuniv.edu/id/eprint/28849

Actions (login required)

View Item
View Item