Optimization of decentralized random field estimation networks under communication constraints through Monte Carlo methods

Warning The system is temporarily closed to updates for reporting purpose.

Üney, Murat and Çetin, Müjdat (2014) Optimization of decentralized random field estimation networks under communication constraints through Monte Carlo methods. Digital Signal Processing, 34 . pp. 16-28. ISSN 1051-2004 (Print) 1095-4333 (Online)

This is the latest version of this item.

[thumbnail of This is a RoMEO green journal -- author can archive pre-print (ie pre-refereeing)] PDF (This is a RoMEO green journal -- author can archive pre-print (ie pre-refereeing))
DSP_uney_mcoptundirected_preprint.pdf

Download (441kB)
[thumbnail of uney_DSP14.pdf] PDF
uney_DSP14.pdf
Restricted to Registered users only

Download (859kB) | Request a copy

Abstract

We propose a new methodology for designing decentralized random field estimation schemes that takes the tradeoff between the estimation accuracy and the cost of communications into account. We consider a sensor network in which nodes perform bandwidth limited two-way communications with other nodes located in a certain range. The in-network processing starts with each node measuring its local variable and sending messages to its immediate neighbors followed by evaluating its local estimation rule based on the received messages and measurements. Local rule design for this two-stage strategy can be cast as a constrained optimization problem with a Bayesian risk capturing the cost of transmissions and penalty for the estimation errors. A similar problem has been previously studied for decentralized detection. We adopt that framework for estimation, however, the corresponding optimization schemes involve integral operators that are impossible to evaluate exactly, in general. We employ an approximation framework using Monte Carlo methods and obtain an optimization procedure based on particle representations and approximate computations. The procedure operates in a message-passing fashion and generates results for any distributions if samples can be produced from, e.g., the marginals. We demonstrate graceful degradation of the estimation accuracy as communication becomes more costly.
Item Type: Article
Uncontrolled Keywords: Decentralized estimation; Communication constrained inference; Random fields; Message passing algorithms; Monte Carlo methods; Wireless sensor networks
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Electronics
Faculty of Engineering and Natural Sciences
Depositing User: Müjdat Çetin
Date Deposited: 22 Dec 2014 10:35
Last Modified: 02 Aug 2019 14:52
URI: https://research.sabanciuniv.edu/id/eprint/25629

Available Versions of this Item

Actions (login required)

View Item
View Item