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Abstract

We propose a new methodology for designing decentralized random field estimation schemes that takes

the tradeoff between the estimation accuracy and the cost of communications into account. We consider

a sensor network in which nodes perform bandwidth limited two-way communications with other nodes

located in a certain range. The in-network processing starts with each node measuring its local variable

and sending messages to its immediate neighbors followed byevaluating its local estimation rule based

on the received messages and measurements. Local rule design for this two-stage strategy can be cast as

a constrained optimization problem with a Bayesian risk capturing the cost of transmissions and penalty

for the estimation errors. A similar problem has been previously studied for decentralized detection. We

adopt that framework for estimation, however, the corresponding optimization schemes involve integral

operators that are impossible to evaluate exactly, in general. We employ an approximation framework

using Monte Carlo methods and obtain an optimization procedure based on particle representations and

approximate computations. The procedure operates in a message-passing fashion and generates results for

any distributions if samples can be produced from, e.g., themarginals. We demonstrate graceful degradation

of the estimation accuracy as communication becomes more costly.
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1. Introduction

Wireless sensor networks have been a promising technology for deploying a large number of sensor plat-

forms over a region to gather dense spatial samples of a physical phenomenon [1]. Applications including

environmental monitoring, structural monitoring [2] and precision agriculture [3] benefit from wirelessly

networking these platforms in an ad-hoc fashion which can also collect measurements in possibly multiple

modes induced by multiple quantities of interest. There arechallenges in design because the sensor plat-

forms have limited computational and energy resources and the links over which they can communicate

are bandwidth (BW) limited. The dispersed nature of the system necessitates some communications for

processing the measurements, however, the energy cost of transmitting bits is usually greater than that for

computing them [4]. Therefore, it is crucial for the feasibility of a sensor network to take the estimation-

communication tradeoffs into account while performing collaborative “online” (or, in–network) processing

of the measurements in the network [5].

In this context, we are concerned with designing decentralized processing schemes for random field

estimation under a set of communication constraints. In thenetwork structure we consider, the platforms

perform local communication with their neighbors located within a certain range and form a connected ad-

hoc network with BW limited links. We are particularly interested in the tradeoff between the estimation

accuracy and the cost of trasmissions given the link topology. Transmission costs might include the energy

cost of communications through, e.g., an energy dissipation model for transmitting and receivingk bits at a

distance ofd meters [6].

Subject to estimation is a set of spatial random variables that exhibit a correlation structure. Examples

of physical phenomena that can be modeled with such random fields include turbulent flow (Chp. 12 of

[7]) and geostatistical data [8] such as temperature measurements over a field (Chp. 1 of [9]). There is a

variety of lines of investigation on random field estimationwith sensor networks. In-network processing

schemes based on adaptive hierarchies (e.g., [10]), a designated fusion center (FC) receiving quantized mea-

surements (e.g., [11]), and iterations involving FC feedback [12] have been considered. These treatments

cannot pose an in-network strategy design problem that explicitly takes the tradeoffs into account and are

not decentralized in that not all of the nodes contribute to the estimation task but only one or more FCs.

Estimation of dynamic random fields through Kalman-Bucy filtering (KBF) is considered in [13] and [14].

In particular, [14] introduces a distributed realization of the KBF, whereas [13] considers an FC that collects

measurements from sensors after finding a reduced model whereby a subset of the sensors are queried based
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on a surrogate communication costs and an estimation penalty. Our problem setting differs in that we are

concerned with completely decentralized strategies and, on a static problem, consider the trade-off between

the estimation accuracy and the communication load of the network.

Decentralized estimation in sensor networks has also been studied using probabilistic graphical models

(see, e.g., [15] and the references therein). In this approach, a probabilistic dependency graph of the random

field is mapped onto the communication topology. The in-network processing strategy then becomes a

message passing algorithm which communicates probabilitydistributions. However, model approximations

together with message coding and censoring to facilitate low-energy digital transmissions complicate the

performance analysis [16]. As a result, it is not straightforward to state a design problem that takes the

network topology and the communication cost into account using this perspective [17].

We consider a class of in-network processing strategies which operate over an undirected communica-

tion topology and yield a rigorous communication constrained design problem through a tractable Bayesian

risk. In particular, the platforms specify the vertex set and the undirected edges represent bi-directional

communication links with finite alphabets sizes of which arerelated to the BWs. The nodes estimate a (set

of) random variable(s) possibly related to a random field model based on the platform locations through

a two-stage procedure: In the first stage, each node makes a measurement and produces messages to its

neighbors using its communication rule. In the second stagenodes estimate their associated random vari-

able(s), based on both the incoming messages and their measurements. The design problem involves finding

the communication and estimation rules for the nodes and it is in the form of a constrained optimization

problem in which the objective function is a Bayesian risk that penalizes both estimation errors and the

transmissions, and the feasible set of strategies is constrained by the corresponding graph representation

that captures the availability and the capacity of the links.

A similar problem has been recently studied in the context ofdecentralizeddetection[18] based upon

the results for another class of strategies – those over directed acyclic graphs (DAGs)(see also [19]). One

appealing feature of this approach is that the solution to the design problem can be realized as a message

passing algorithm which fits well into the distributed system requirements of a sensor network. We have

considered the design of decentralizedestimationstrategies over DAGs in [20], and introduced an approx-

imation framework through Monte Carlo (MC) methods in orderto overcome the difficulties arising from

the fact that the variables of concern take values from nondenumerable sets in the estimation case. This

paper differs from recent work taking a similar distributed inferenceperspective in that we consider estima-
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tion problems (rather than detection problems as in [18, 19,21]) over undirected graphs (UGs) (rather than

DAGs as in [20]).

The contribution of this paper is an adoption of the aforementioned approximation framework for the

class of (decentralized) two-stage estimation strategiesover UGswhich we believe is a good match for

random field estimation scenarios. Doing that, we transforma Team Decision Theoretic (TDT) iterative

strategy optimization to a computationally feasible MC optimization algorithm which employs nonpara-

metric representations of the underlying distributions. We also maintain the benefits of the TDT solution

and, as a result, our approach features the following: First, this framework enables us to consider a broad

range of communication and computation structures for the design of decentralized estimation networks.

Second, in the case that a dual objective is selected as a weighted-sum of the estimation performance and

the cost of communications, a graceful degradation of the estimation accuracy is achieved as communica-

tion becomes more costly. The resulting pareto-optimal curve enables a quantification of the tradeoff of

concern. Under reasonable assumptions, the optimization procedure scales with the number of platforms as

well as the number of variables involved. Moreover, it can berealized as a message passing algorithm which

is an appropriate computational structure for network self-organization. The MC optimization scheme we

propose features scalability with the cardinality of the sample sets required and can produce results for any

set of distributions provided that independent samples canbe generated from, e.g., the marginals.

In Section 2, we introduce the design problem in a constrained optimization setting, and then we de-

scribe the Team Decision Theoretic investigation of its solution in Section 3. We present our MC optimiza-

tion framework for two-stage in-network processing strategies over UGs in Section 4. Then, we demon-

strate the aforementioned features through several examples in Section 52. Finally, we provide concluding

remarks in Section 6.

2. Problem Definition

In this section, we start introducing the problem setting with some basic definitions. Then, in Section 2.1

we present the two-stage in-network processing scheme overan undirected communication topology. In

Section 2.2, we state the strategy design problem as a constrained optimization problem taking into account

the communication constraints. This problem is to be solvedoffline, i.e., before processing the observations.

2The preliminary results of the proposed scheme appear in [22].
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We considerN sensor platforms dispersed over a region. Each node can establish communication

links with some of the other nodes within its communication range. These links are bi-directional and the

communications structure can be represented by an undirected graphG = (V,E) in which each platform is

associated with a nodev ∈ V. An edge (i, j) ∈ E corresponds to a finite capacity one-way link from platform

Table 1: Nomenclature for the in-network processing strategy.

G = (V,E) Undirected graph of the set of nodesV and the set of bi-directional communication

links E.

X j Random variable associated with nodej.

Yj Random variable modeling the measurement taken by nodej.

(X,Y) Joint random variable modeling the estimation problem.

x j Realization ofX j in the joint event.

y j Measurement taken by nodej.

x̂ j Estimated value ofx j drawn by nodej.

ui→ j Message symbol from nodei to j.

Ui→ j Set of admissible symbols from nodei to j.

−→u j Vector of messages from nodej to its neighbors.

←−u j Vector of messages to nodej from its neighbors.

µ j(y j) Communication rule of nodej outputting−→u j.

MGj Space of feasible communication rules for nodej.

ν j Estimation rule of nodej outputtingx̂ j given (y j ,
←−u j).

NGj Space of feasible estimation rules for nodej.

γ j The local rule pair (µ j , ν j) node j.

Γ
G
j Space of feasible local rule pairs for nodej in G.

γ In–network processing strategy as a concatenation of all local rules.

ΓG Space of all feasible strategies overG.

c(u, x, x̂) Cost of the communication vectoru and the pair (x, x̂).

J(γ) Bayesian risk ofγ.
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i to j. The bi-directionality is captured by using a UG representation in which (i, j) ∈ E ⇐⇒ ( j, i) ∈ E. A

particular example of such a network can be seen in Figure 5(a) in Section 5.3.

On the edge (i, j), nodei transmits a symbolui→ j from the set of admissible symbolsUi→ j . For example,

in order to model a link with capacity log2 di j bits, one can selectUi→ j such that
∣

∣

∣Ui→ j

∣

∣

∣ = di j . In order to

represent the “no transmission” event in censoring or selective communication schemes, one can insert an

additional symbol intoUi→ j such as 0. We note that, as both (i, j) and (j, i) ∈ E, the variablesu j→i andui→ j

are symbols in opposite directions over the same link.

Associated with each sensor platform is a set of variables modeling, e.g., the temperature, humidity,

or the flow vector at possibly the position of the platform. Let us denote a concatenation of variables

associated with nodej by X j and the set it takes values from byX j . In principle, there is no restriction on

the dimensionality ofX j , i.e., dim(X j) ≥ 1. All random variables to be estimated can be represented with a

concatenationX = (X1,X2, ...,XN) which takes values fromX = X1 × X2 × ... × XN. For example, for real

valued random variables,X j = R andX = R
N. It is worth reminding that, in the detection setting,X js are

M < ∞ element sets for M-ary detection.

Node j collects measurementsYj using its onboard sensors.Yj ∈ Y j whereY j is nondenumerable,

as well. All observations collected by the network is denoted by Y = (Y1,Y2, ...,YN) and resides inY =

Y1 × Y2 × ... × YN.

The probabilistic model underlying the estimation problemis represented by the random variable pair

(X,Y). It is characterized by the joint cumulative distributionfunction PX,Y(x, y) with the densitypX,Y(x, y)

for a realization (x, y) = (x1, ..., xN, y1, ..., yN).

2.1. Two-stage in-network processing strategy over undirected graphs

Suppose we are given a UG communication topologyG = (V,E). The neighbors of nodej is given by

ne( j) , {i | (i, j) ∈ E ∧ ( j, i) ∈ E}. Let us denote the set of outgoing messages from nodej to its neighbors

by −→u j , {u j→i | i ∈ ne( j)}. Then,−→u j takes values from
−→U j = ⊗

i∈ne( j)
U j→i where⊗ denotes consecutive

Cartesian products3. Being at the receiving end of the links from its neighbors, node j collects the incoming

messages denoted by←−u j , {ui→ j | i ∈ ne( j)} and take values from
←−U j = ⊗

i∈ne( j)
Ui→ j. The messages across

the network are similarly given byu , {ui→ j | (i, j) ∈ E} and reside inU , ⊗
(i, j)∈E

Ui→ j.

At this point, it is worthwhile to point out that we implicitly assume the links inG are error free so

that the symbols transmitted (or lack thereof) from neighbors are exactly restored at the receiving end. This

3 In other words, e.g.,X = X1 × X2 × X3 andX = ⊗
i∈{1,2,3}

Xi are synonymous.
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is for the sake of simplicity throughout the article and it isindeed possible to accommodate an unreliable

channel model capturing link errors and packet losses possibly due to noise and interference in this network

model [18]4.

We continue our discussion by specifying a two-stage operation that ensures a causal online processing

without deadlocks: In the first stage, having observedy j ∈ Y j , node j evaluates its local communication

rule defined byµ j : Y j →
−→U j and produces outgoing messages to its neighbors5. After receiving all the

messages from its neighbors, nodej performs the second stage in which it evaluates its estimation rule

given byν j : Y j ×
←−U j → X j to draw an inference on the valueX j takes based on the observationy j and

the incoming messages←−u j from neighboring nodes. Hence, the local rule of nodej is a pair given by

γ j = (µ j , ν j). The objective of designingγ j is the topic of Section 2.2.

Based on the previous definitions, the space of all first-stage (communication) rules is defined as

MGj , {µ j | µ j : Y j →
−→U j} and the second-stage (estimation) rule space is given byNGj , {ν j | ν j : Y j ×

←−U j → X j}.

Consequently, the space of rules local to nodej is given byΓGj , MGj × N
G
j . The process from nodej’s

point of view is illustrated in Figure 1(a).

We define strategies over the entire network by aggregating local rules: A first-stage communication

and second-stage estimation strategy pairγ = (µ, ν) is defined asµ = (µ1, µ2, ..., µN) andν = (ν1, ν2, ..., νN),

respectively. We refer toγ = (γ1, γ2, ..., γN) as a two-stage strategy. The space of two-stage strategiesover

G is given byΓG = ⊗
v∈V
Γ
G
v . It can be seen thatΓG = {γ | γ : Y → X × U}. Here,γ ∈ ΓG is restricted

to the strategies which produceu ∈ U in accordance with the networkG. Consider the set of strategies

γ : Y → X × U which do not takeu into account. For example, the centralized estimator whichoperates

over the joint posterior is such a strategy. If we denote the set ofu unrestricted strategies byΓ, then,ΓG ⊂ Γ.

The global view of the strategy is illustrated in Figure 1(b).

The networked constrained online processing model above provides an abstraction of the subtleties

related to the physical, network and other lower layers of the communication architecture. There has

been a considerable amount of work on networking sensors including connectivity control [23], Medium

4In particular, [18] introduces an additional variablezj as the channel output to nodej. This variable can be treated as a function

of the messages sent from the neighborsne( j) and characterised by a conditional distributionp(zj |←−u j). Examples in which this

distribution is specified for modeling binary erasure channels and broadcast channels with interference can be found in[19].
5Note that a variety of transmission schemes can be represented byµ j such as “broadcast” and “peer-to-peer”. In order to

model the former,
−→U j can be replaced with its subset which contains identical messages for all neighbors. Our setting falls into the

peer-to-peer type communication in this perspective.
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Nodej
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Stage 2

(a)

Stochastic

Mapping

N-node UG 

network

(b)

Figure 1: Two-stage in-network online processing strategyover an UGG = (V,E): (a) The viewpoint of nodej in G which

evaluates its first-stage communication ruleµ j based on its measurementyj . In the second-stage,ν j is evaluated at the incoming

messages←−u j andyj and an estimate ˆxj is produced. (b) The global view of the two-stage strategy overG where a random vectorX

takes the valuex as the outcome of an experiment and induces observationsy.

Access Control [24] and multi-hop routing protocols enabling transmission between any two nodes (see,

e.g., [23][25],[26]). Therefore, a higher level architecture underpinning the two-stage strategy can be de-

signed using an adequate combination of these results in consideration of the application specific require-

ments [27, 28]. For the cases that the transmission errors and packet losses cannot be ignored, channel

models characterizing these possibilities can be used in the online model as discussed previously.

2.2. Design problem in a constrained optimization setting

Given an arbitrary UGG, the selection of a two-stage strategy fromΓG is based on a Bayesian risk

function J(γ) whereγ = (µ, ν) ∈ ΓG, is constructed as follows: One can select a costc such that an

estimation error penalty for the pair (x, x̂) and a cost due to the corresponding set of messages in the network

u are assigned, i.e.,c : U ×X × X → R. For an arbitrary strategyγ ∈ ΓG, the corresponding Bayesian risk

is given by

J(γ) , E
{

c(U,X, X̂); γ
}

= E {E {c (µ(Y),X, ν(Y, µ(Y))) |Y}}. (1)

Selection of the best two-stage strategy for estimation under communication constraints is, hence, equiv-

alent to solving the constrained optimization problem given by

(P) : minJ(γ) (2)

subject toγ ∈ ΓG
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The distribution underlying the expectation in (1) is specified byγ through the densityp(u, x̂|y; γ) and

the equation

p(u, x̂, x; γ) =
∫

Y

dyp(u, x̂|y; γ)p(y, x), (3)

which can be shown after realizing that the tuple (U, X̂) = γ(Y) is a random vector conditionally independent

of X givenY (denoted by (U, X̂) ⊥⊥ X |Y ) provided thatγ = (γ1, ..., γN) ∈ ΓG is known. Then, the density

p(u, x̂|y) is specified byγ and denoted byp(u, x̂|y; γ).

Let us consider how local communication and computation rules take part in this density: Once the

local rule pairγ j = (µ j , ν j) is fixed, the conditional density of the outcomesp(−→u j , x̂ j |y j ,
←−u j; γ j) becomes

specified. By the two stage mechanism, this density decomposes further as

p(−→u j , x̂ j |y j ,
←−u j; γ j) = p(−→u j |y j ; µ j)p(x̂ j |y j ,

←−u j; ν j).

The distributionp(u, x̂|y; γ), then, builds upon the local rule pairs following the causal processing pro-

vided byγ and the following factorization holds:

p(u, x̂|y; γ) =
∏

j∈V
p(−→u j |y j ; µ j)p(x̂ j |y j ,

←−u j; ν j). (4)

In Problem (P), it can be shown that if there exists an optimalstrategy, then there exists an optimal

deterministic strategy [29]. Therefore it suffices to consider the deterministic local rule spaces for which

case the local first and second stage rules specify the densities involved in Eq.(4) as follows:

p(−→u j |y j ; µ j) = δµ j (yj )(
−→u j) (5)

p(x̂ j |y j ,
←−u j ; ν j) = δ(x̂ j − ν j(y j ,

←−u j)) (6)

whereδm(n) is the Kronecker delta andδ is the Dirac delta distribution. After substituting Eq.s (5) and (6)

into Eq.(4) and Eq.(3), the distribution underlying the Bayesian risk is specified.

We provide a table of symbols introduced in this section in Table 1 for helping the reader throughout

the rest of the article.

3. Team Decision Theoretic Formulation

Problem (P) in (2) is a typical team decision problem [30]. Itis often not possible to find solutions

with global optimality guarantees(see, e.g., [29]). A convenient solution approach which has been used
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Algorithm 1 Iterations converging to a person-by-person optimal strategy.

1: Chooseγ0 = (γ0
1, γ

0
2, ..., γ

0
N) ∈ ΓG andε ∈ R

+ ⊲ Initialize

2: l ← 0

3: repeat

4: l ← l + 1

5: for j = N,N − 1, . . . , 1 do

6: γl
j = arg min

γ j∈ΓGj
J(γl−1

1 , ..., γ
l−1
j−1, γ j , γ

l
j+1, ..., γ

l
N) ⊲ Update

7: end for

8: until J(γl−1) − J(γl ) < ε ⊲ Check

in a variety of similar contexts including quantizer designfor minimum distortion [31, 32] and distributed

estimation [33, 34] is to use necessary (but not sufficient) conditions of optimality to achieve nonlinear

Gauss-Seidel iterations converging to a person-by-person(pbp) optimal strategy [29][18]: At the pbp op-

timal point γ∗ ∈ ΓG, it holds thatJ(γ∗j , γ
∗
\ j) ≤ J(γ j , γ

∗
\ j) for all γ j ∈ ΓGj where\ j denotesV \ j and

γ∗\ j = {γ
∗
1, γ
∗
2, ..., γ

∗
j−1, γ

∗
j+1, ..., γ

∗
N}6. In other words, no improvement toJ(γ∗) can be obtained by varying

only a single local ruleγ∗j . The strategies that satisfy this equilibrium condition are solutions to a relaxation

of (P) in which one is interested in findingγ∗ = (γ∗1, ..., γ
∗
n) such that

γ∗j = arg min
γ j∈Γ j

J(γ j , γ
∗
\ j) (7)

for all j ∈ {1, 2, ...,N}. The strategyγ∗ is referred to as a pbp optimal strategy. The iterations given by

Algorithm 1 converge to such a solution starting with an arbitrary set of local rules.

It is useful to note that the converged strategy depends on the initialization, in general. Therefore, it

is a good practice to start the iterations with a reasonable selection of initial rules and use Algorithm 1 to

improve upon them. For the example scenarios presented in Section 5, the iterative approach delivers a

consistent performance with different initializations.

For thedetectionproblem, an extensive study of pbp optimal solutions for a number of strategy classes

can be found in [18]. One of these classes exhibits directed acyclic communication and computation struc-

tures and can equivalently be represented by DAGs [19]. It has been shown that in the case of two-stage

strategies over undirected communication topologies, pbpoptimal set of local rules lie in a finitely param-

eterized subspace ofΓG, and hence errors involved in their computation is mainly due to finite machine

6When it is clear from the context, we denote{xi | i ∈ I } by xI whereI is an index set for the collection of variables{x1, x2, ..., xN}.
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precision. This is partly becauseX js of a detection problem, contrary to the estimation setting, take values

from finite sets. The communication and computation structure of a two-stage strategy can equivalently be

represented through a bipartite graph (Chp. 4 of [18]). Suchgraphs are directed and acyclic structures and,

hence, two-stage rules can be investigated using the results for the detection problem over a DAG (provided

that certain assumptions hold).

In our estimation setting over an undirected graph, we follow a similar approach and exploit the pbp

optimality condition for decentralized estimation strategies over DAGs [20]78.

We start by unwrapping the communication and computation structure of two-stage strategies over undi-

rected communication topologies onto directed acyclic bipartite graphs. The two-stage operation enables

us to represent the same platform with two nodes of different types. The nodes of the bipartite graph

B = ((V,V′),F ) are identified by considering the set of nodes in the undirected graphG, i.e.,V, and its

replicateV′ , { j′ | j ∈ V } as a pair and assigning the communication rules and the estimation rules toV

andV′, respectively. The edges of the bipartite graph connect communication nodes inV to the estimation

rules of the neighbor nodes inV′. In other words, (j, i′) ∈ F if i ∈ ne( j) in G. For example, consider the

undirected communication topology given in Figure 2(a). The two-stage strategy over this UG is explicitly

shown in Figure 2(b). The unwrapped directed acyclic communication and computation structure of the

two-stage strategy which is a bipartite graph is shown in Figure 2(c). Nodes 1− 4 inV perform only the

communication rules, i.e.,µ js. Likewise, nodes 1′ − 4′ in V′ are associated only with the estimation rules,

i.e., ν js. Node j and j′ correspond to the same physical platform but different processing tasks, in this

respect.

At this point, it is useful to contrast the two-stage strategy design problem with that for an FC estimator

in a star-topology [33]. In the conventional setting, the design goal is to find an estimation rule for the FC

and quantizers for the peripheral sensors which minimize the expected cost of estimation errors. The FC

receives messages from all of the other sensors, however, communication is not penalized. The two-stage

strategy we consider decentralizes the estimation task in away that each node can be viewed as a local FC

7In principle, it is possible to obtain the estimation results presented in this section starting from the detection results in [18] and

performing the marginalizations in the variablesXjs andX̂js through appropriate integrations (as opposed to summations) under

error-free and “peer-to-peer” transmission assumptions.In part becauseX js are nondenumerable, our problem, contrary to the

detection setting, does not lead to pbp optimal local rules that can be characterized with a finite set of parameters, in general.
8In the case of a dynamic problem in whichp(x) varies over time, the strategies can be updated accordingly. Investigation of

efficient methods for updating strategies in dynamic problems is left beyond the scope of this work.
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(a) (b) (c)

Figure 2: (a) A loopy UG of 4 nodes. (b) The two stage strategy over the UG. (c) The bi-partite DAG counterpart of the two-stage

online processing: Nodes 1–4 correspond to platforms 1–4 but only performing the communication rules, whereas nodes 1′–4′

correspond to platforms 1–4 but only performing the estimation rules.

with its neighbors as peripherals (e.g., the estimation nodes 1′ − 4′ in Figure 2(c) can be viewed as FCs of

their local networks) and the communication rules are not restricted to quantizers. These star networks are

coupledin the two-stage strategy design as all the estimation and communication rules that constitute the

strategy are considered jointly through the cost functionc(x̂, x, u).

Next, we make a set of assumptions:

Assumption 1. The global cost function is the sum of costs due to the communication rules and the decision

rules, which are in turn additive over the nodes:

c(u, x̂, x) = cd(x̂, x) + λcc(u, x) (8)

cd(x̂, x) =
∑

i∈V
cd

i (x̂i , xi)

cc(u, x) =
∑

i∈V
cc

i (
−→u i , x)

Here,λ appears as a unit conversion constant and can be interpretedas the equivalent estimation penalty

per unit communication cost [18]. Hence J(γ) = Jd(γ) + λJc(γ) where Jd(γ) = E{cd(x̂, x); γ} and Jc(γ) = E{cc(u, x); γ}

respectively9.

9Note that convex combinations of dual objectives, i.e.,J′(γ) = αJd(γ)+(1−α)Jc(γ), yield pareto-optimal curves parameterized

by α. This setting preserves the pareto-optimal front sinceλ = (1 − α)/α andJ(γ) ∝ J′(γ) yielding a graceful degradation of the

estimation performance asλ is increased.
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Assumption 2. (Conditional Independence) The noise processes of the sensors are mutually independent

and hence given the state of X, the observations are conditionally independent, i.e., p(x, y) = p(x)
∏N

i=1 p(yi |x).

Assumption 3. (Measurement Locality) Every node j observes yj due to only xj , i.e., p(y j |x) = p(y j |x j).

Under these conditions, it is possible to applyCorollary 3.4 in [20], which reveals the structure of

the pbp optimal local communication and estimation rules instrategies over DAGs, to the bipartite rep-

resentation of the two-stage strategies. Before stating this result, let us define two-step neighbors ofj by

ne2( j) , ∪i∈ne( j)ne(i) \ j.

Proposition 3.1. (Adaptation of Proposition 4.3 in [18] for estimation) Suppose that Assumptions 1-3 hold

and suppose we are given a pbp optimal two-stage strategyγ∗ = (γ∗1, ...γ
∗
N) over an undirected graph. If all

the local rules other than the jth are fixed at the optimum point, the jth optimal rule can be characterized as

follows: The communication rule (evaluated at stage-one) is given by

µ∗j (y j) = arg min
−→u j∈
−→U j

∫

X j

dx j p(y j |x j)α j(
−→u j , x j ; ν

∗
ne( j), µ

∗
ne2( j)) (9)

for all y j ∈ Y j with nonzero probability, where

α j(
−→u j , x j; ν

∗
ne( j), µ

∗
ne2( j)) ∝ p(x j)[λc

c
j (
−→u j , x j) +C j(

−→u j , x j; ν
∗
ne( j), µ

∗
ne2( j))]. (10)

The estimation rule (evaluated at stage-two) is given by

ν∗j (y j ,
←−u j) = arg min

x̂j∈X j

∫

X j

dx j p(y j |x j)β j(x j , x̂ j ,
←−u j; µ

∗
ne( j)) (11)

for all y j ∈ Y j and for all←−u j ∈
←−U j with nonzero probability where

β j(x j , x̂ j ,
←−u j ; µ

∗
ne( j)) ∝ p(x j)P j(

←−u j |x j; µ
∗
ne( j))c

d
j (x̂ j , x j). (12)

The term Pj(
←−u j |x j ; µ∗ne( j)) in Eq.(12) is the (incoming) message likelihood and given by

P j(
←−u j |x j ; µ

∗
ne( j)) =

∫

Xne( j)

dxne( j) p(xne( j) |x j)
∏

i∈ne( j)

Pi→ j(ui→ j |xi; µ
∗
ne( j)) (13)

with terms capturing the influence of i∈ ne( j) on j given by

Pi→ j(ui→ j |xi; µ
∗
i ) =

∑

−→u i\ui→ j

p(−→u i |xi ; µ
∗
i ) (14)

13



for all ui→ j ∈ Ui→ j where

p(−→u i |xi ; µ
∗
i ) =

∫

Yi

dyi p(yi |xi)p(−→u i |yi ; µ
∗
i ). (15)

The term Cj(
−→u j , x j; ν∗ne( j), µ

∗
ne2( j)

) in Eq.(10) is the total expected cost and given by

C j(
−→u j , x j; ν

∗
ne( j), µ

∗
ne2( j)) =

∑

i∈ne( j)

Ci→ j(u j→i , x j; ν
∗
i , µ
∗
ne(i)) (16)

for all −→u j ∈
−→U j with terms capturing the influence of j on i∈ ne( j) given by

Ci→ j(u j→i , x j; ν
∗
i , µ
∗
ne(i)) =

∫

Xne(i)\ j

dxne(i)\ j

∫

Xi

dxi p(xne(i)\ j , xi |x j)

×
∑

une(i)\ j

∏

j ′∈ne(i)\ j
P j ′→i(u j ′→i |x j ′ ; µ

∗
j ′)I i(
←−u i , xi; ν

∗
i ) (17)

such that

I i(
←−u i , xi; ν

∗
i ) =

∫

Yi

dyi

∫

Xi

dx̂i cd
i (x̂i , xi)p(x̂i |yi ,

←−u i ; ν
∗
i )p(yi |xi). (18)

Proof. As discussed at the beginning of this section, two-stage strategies over undirected graphs can equiv-

alently be represented by strategies over DAGs. Under Assumptions 1–2,Corollary 3.4in [20] is valid over

the bipartite directed acyclic model associated with the two-stage strategies over the undirected graphG.

Consider the bipartite DAGB = ((V,V′),F ) associated with the undirected graphG. Proposition 3.1 is

obtained after applyingCorollary 3.4 in [20] onB and then refolding it back toG by substitutingj for all

j′ ∈ V′.

Proposition 3.1 provides a variational characterization of the jth communication and estimation rules,

given a pbp optimal two-stage strategy10. Let us use a simpler notation for the terms on the left hand

side (LHS) of Eq.s(13) and (16) and denote them byP j(
←−u j |x j) andC j(

−→u j , x j), respectively. Considering

Eq.s(13) and (14),P j(
←−u j |x j) is a likelihood function forx j inducing←−u j . Eq.s(16)-(18) reveal thatC j(

−→u j , x j)

is the total expected cost induced on the neighbors by transmitting −→u j, i.e.,E{cd(x̂ne( j), xne( j))|−→u j , x j; ν∗ne( j), µ
∗
ne2( j)
}.

Sincep(x j)p(y j |x j)P(←−u j |x j) ∝ p(x j |y j ,
←−u j) holds under Assumptions 2-3, thejth optimal communication

rule selects the message that results with a minimum contribution to the overall cost and the optimal

estimation rule selects ˆx j that yields the minimum expected penalty giveny j and←−u j . For example, if

10The integrals overX j andY j should be interpreted in accordance with the dimensionality of their domains.
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cd
j (x̂ j , x j) = (x̂ j − x j)2 as in the conventional mean squared error (MSE) estimator, then the estimation rule

in Eq.(11) can be expressed in closed form as

x̂ j = ν
∗
j (y j ,
←−u j) =

∫

X j
dx j x j p(x j)p(y j |x j)P j(

←−u j |x j)
∫

X j
dx j p(x j)p(y j |x j)P j(

←−u j |x j)
. (19)

SinceP j(
←−u j |x j) = p(←−u j |x j ; µ∗ne( j)) is the likelihood of the incoming messages and the conditional indepen-

dence relation
←−
U j ⊥⊥ Yj |X j holds, then

p(x j , y j ,
←−u j) = p(x j)p(y j |x j)p(←−u j |x j)

and the denominator in Eq.(19) is nothing butp(y j ,
←−u j) = p(y j ,

←−u j ; µ∗ne( j)). Consequently, the local es-

timation rule is the expected value of the posterior given the local measurement and incoming messages

given by

x̂ j = ν
∗
j (y j ,
←−u j) =

∫

X j

dx j x j p(x j |y j ,
←−u j ; µ

∗
ne( j)).

Based on Proposition 3.1, it is possible to tailor theUpdate step of Algorithm 1 to obtain an iterative

scheme for finding a pbp optimal two-stage strategy. The treatment of the terms in Eq.s(10), (12)-(18) as

operators that can act on any set of local rules, not necessarily optimal, results with Algorithm 2. Note

that, these steps can be carried out in a message passing fashion. In the first pass (Update Step 1), all

nodes compute and send node-to-node likelihood terms to their neighbors. In the second pass (Update

Step 2), upon reception of these messages, all nodes update their (incoming) message likelihoods and

estimation rules. Then, they compute and send expected costmessages to their neighbors. After receiving

cost messages from neighbors, each node updates its communication rule (Update Step 3). Owing to

the message passing structure, the complexity of optimization is bounded by the node with the highest

degree rather than the number of nodes. Such a structure is also advantageous in the case of a network

self-organization requirement.

Finally, the value of the Bayesian risk function at thelth iteration is easily found in terms of the expres-

sions discussed above as

J(γl) =
∑

i∈V
Gd

i (νli) + λ
∑

i∈V
Gc

i (µ
l
i), (20)

where the per node costs are given by

Gd
i (νli) =

∑

←−u i

∫

Xi

dxi p(xi)P
l+1
i (←−u i |xi)I i(

←−u i , xi; ν
l
i), (21)

Gc
i (µ

l
i) =

∑

−→u i

∫

Xi

dxic
c
i (
−→u i , xi)p(xi)p(−→u i |xi ; µ

l
i). (22)
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Algorithm 2 Iterations converging to a pbp optimal two-stage strategy over a UGG.

1: Chooseγ0 = (γ0
1, γ

0
2, . . . , γ

0
N) ∈ ΓG andε ∈ R

+ ⊲ Initialize

2: l ← 0

3: repeat

4: l ← l + 1

5: for i = 1, 2, . . . ,N do ⊲ (Update Step 1)

Find the node-to-node likelihood messagesPl
i→ j = Pi→ j(ui→ j |xi ; µl−1

i ) for j ∈ ne(i) using

Eq.s(15) and (14).

6: end for

7: for j = 1, 2, . . . ,N do ⊲ (Update Step 2)

Find the incoming message likelihoodP j
l by substitutingPl

i→ js into Eq. (13).

Find the estimation ruleνlj by substitutingP j
l in Eq.s(12) and (11).

Find the cost messagesCl
j→i for i ∈ ne( j) by usingνlj andPl

i→ j in Eq.s(18) and (17).

8: end for

9: for j = 1, 2, . . . ,N do ⊲ (Update Step 3)

Find the communication ruleµl
j by substitutingCl

i→ j from i ∈ ne( j) into Eq.s(16),(10) and (9).

10: end for

11: until J(γl−1) − J(γl ) < ε ⊲ Check

4. MC Optimization Framework for two-stage in-network processing strategies over UGs

In this Section, we develop Monte Carlo (MC) methods to realize Algorithm 2 introduced in Section 3.

Algorithm 2 results with a pbp optimal processing strategy whose structure is captured by the operators in

Proposition 3.1. It is not possible to evaluate these operators for arbitrary selections of, e.g., priorsp(x j)s,

likelihoods p(y j |x j)s orγ\ j ∈ ΓG\ j, in general. Instead, we consider a fixed set of particles at each node and

approximate the aforementioned operators using MC methodssuch as Importance Sampling (IS) [35, 36].

The resulting algorithm which is detailed in this section carries out strategy optimization through passing

messages represented by weighted particles11.

We use IS with independent samples generated from two proposal distributionssj(x j) andq j (y j) over

11Similar decentralized algorithms based on transmissions of weighted particles include particle Belief Propagation algo-

rithms (see, e.g., [37, 38]) for estimation.
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X j andY j , respectively for nodej:

S j , {x(1)
j , x

(2)
j , ..., x

(M j )
j } such that x(m)

j ∼ sj(x j) for m= 1, 2, ...,M j , (23)

and,

Q j , {y(1)
j , y

(2)
j , ..., y

(P j )
j } such thaty(p)

j ∼ q j(y j) for p = 1, 2, ...,P j . (24)

These proposal distributions can be selected as the local marginals p(x j) and p(y j). This sampling

strategy has been previously used in similar message passing algorithms (see, for example, [38] and the

references therein). Use of heavy tailed distributions would improve the small sample size variance of

IS [36]. Although the sizes ofS j andQ j might vary, we assume thatM j = M andP j = P for j ∈ V for the

simplicity of the discussion throughout.

We fix these particle sets in order to reduce the communication load of the optimization by not having

to transmit particles at every iteration but transmit them only once and communicate the weights for the rest

of the iterations. This approach is similar to that proposedin [38] for particle BP algorithms, and, has also

been used in [20] for optimizing decentralized strategies over DAGs.

Using these sample sets, we make successive approximationsto the expressions constituting thejth pbp

optimal local rule given in Proposition 3.1. First, we approximate to the local rule pair in Section 4.1. Then,

we apply the IS rule to the incoming message likelihood (Sec.4.2). In Section 4.3, we tackle computations

regarding the expected cost term. Finally, in Section 4.4, we employ all the previous steps simultaneously

in Algorithm 2 and obtain a Monte Carlo optimization scheme such that the message passing structure is

preserved.

4.1. Approximating the person-by-person optimal local rule

Let us consider Proposition 3.1 for the variational form of the jth communication and estimation rules

in the case of an arbitraryγ\ j not necessarily optimal. We approximate Eq.s(9) and (11) since it is often not

possible to compute these integrals, exactly, for arbitrary selections of the factors that constructα j andβ j

(given in Eq.s(10) and (12), respectively).

We simplify our notation by hiding the dependence of the operators in Proposition 3.1 to the local rules

in γ\ j . For example, we denote the incoming message likelihood in Eq.(13) and the total expected cost in

Eq.(16) byP j(
←−u j |x j) andC j(

−→u j , x j), respectively, where the underlying rules are obvious from the context.
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We use the sample setS j in Eq.(23) for finding an IS approximation to the communication rule in Eq.(9)

and obtain

µ j(y j) ≈ arg min
−→u j∈
−→U j

1
∑M

m′=1ω
(m′)
j

M
∑

m=1

ω
(m)
j p(y j |x(m)

j )[λcc
j (
−→u j , x

(m)
j ) +C j(

−→u j , x
(m)
j )], (25)

ωm
j = p(x(m)

j )/sj(x
(m)
j ), (26)

for all y j ∈ Y j with non-zero probability.

For the local estimation rule given in (11), a similar approximation is given by

ν j(y j ,
←−u j) ≈ arg min

x̂j∈X j

1
∑M

m′=1ω
(m′)
j

M
∑

m=1

ωm
j p(y j |x(m)

j )P j(
←−u j |x(m)

j )cd
j (x̂ j , x

(m)
j ), (27)

for all y j ∈ Y j and←−u j ∈
←−U j with non-zero probability, using the IS weights in Eq.(26).

Example 4.1. Consider the squared error penalty for the estimation error, i.e., cdj (x̂ j , x j) = (x̂ j − x j)2. Then

the pbp optimal estimation rule local to node j as given in thevariational form by Eq.(27)yields

ν j(y j ,
←−u j) ≈

M
∑

m=1
ω

(m)
j x(m)

j p(y j |x(m)
j )P j(

←−u j |x(m)
j )

M
∑

m=1
ω

(m)
j p(y j |x(m)

j )P j(
←−u j |x(m)

j )

.

4.2. Approximating the message likelihood function

We consider the message likelihood functionP j(
←−u j |x j) in the right hand side of (27) given by Eq.(13)

together with the recursion involving Eq.s(14) and (15). Wefind an IS approximation for evaluations of

P j(
←−u j |x j) at x j ∈ S j and←−u j ∈

←−U j as follows: We first considerp(−→u i |xi; µi) in (15). We use the IS rule with

the sample setQ j generated from the local proposal densityqi(yi):

p̃(−→u i |x(m)
i ; µi) ,

1
∑P

p=1ω
(m)(p)
i

P
∑

p=1

ω
(m)(p)
i δ

µi (y
(p)
i )(
−→u i) (28)

ω
(m)(p)
i =

p(y(p)
i |x

(m)
i )

qi(y
(p)
i )

for −→u i ∈ Ui andx(m)
i ∈ Si.

Note that the node-to-node likelihoodPi→ j in (14) is a marginalization ofp(−→u i |xi; µi) and can be esti-

mated by substituting ˜p in (14). Let us denote this term bỹPi→ j .

Second, we considerP j(
←−u j |x j) in (13) and construct a sample set at nodej by using the particle setsSis

local to the neighbors. Themth element in this set is a vector obtained by concatenating themth elements
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from Sis, i.e., we constructSne( j) , {x(m)
ne( j) |x

(m)
ne( j) = (x(m)

i )i∈ne( j)}. Note that these points are generated

from the product of proposals, i.e.,x(m)
ne( j) ∼

∏

i∈ne( j) si(xi). We consider using this sample set with the IS

method and equivalently the proposal density
∏

i∈ne( j) si(xi). Then, the integral in the RHS of Eq.(13) can

be approximated with

P̃ j(
←−u j |x(m)

j ) ,
1

M
∑

m′=1
ω

(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈ne( j)

P̃i→ j(ui→ j |x(m′)
i ), (29)

ω
(m)(m′)
j =

p(x(m′)
ne( j) |x

(m)
j )

∏

i∈ne( j)
si(x

(m′)
i )
.

We replace theP j term in the RHS of Eq.(27) bỹP j and obtain an approximately pbp optimal estimation

rule through these successive IS approximations.

4.3. Approximating the expected cost term

We consider the expected cost termC j in the RHS of the communication rule approximation in (25).

This term is given by Eq.s(16)–(18) and we begin with approximating to the conditional estimation risk

I i(
←−u i , xi ; νi). After substituting from (6) into (18), we obtain

I i(
←−u i , xi ; νi) =

∫

Yi

dyic
d
i (νi(yi ,

←−u i), xi)p(yi |xi).

For the RHS of the expression above, we useqi(xi) as the proposal distribution of the IS rule and utilize

the sample setQi (Eq.(24)). Then, the conditional expected risk is estimated by

Ĩ i(
←−u i , x

(m)
i ; νi) ,

1
P
∑

p=1
ω

(m)(p)
i

P
∑

p=1

ω
(m)(p)
i cd

i (νi(y
(p)
i ,
←−u i), x

(m)
i ) (30)

ω
(m)(p)
i =

p(y(p)
i |x

(m)
i )

qi(y
(p)
i )

for all←−u i ∈
←−Ui andx(m)

i ∈ Si .

Now, let us consider the approximate evaluation of the node-to-node cost messagesCi→ j given by

Eq. (17). We employ IS for approximately evaluating the RHS of Eq. (17) at all possible (u j→i , x
(m)
j ) pairs

such thatu j→i ∈ U j→i andx(m)
j ∈ S j . Similar to the discussion on approximating the message likelihood

term, we consider a sample set constructed by concatenatingthemth elements from the usual sets local to

neighbors ofi other thanj, i.e.,

Sxne(i)\ j , {x(m)
ne(i)\ j |x

(m)
ne(i)\ j = (x(m)

j ′ ) j ′∈ne(i)\ j }
19



This set can equivalently be treated as points generated from
∏

j′∈ne(i)\ j sj′(x j′). Together withSi, we

use the IS approximation to RHS of Eq.(17) and obtain

C̃i→ j(u j→i , x
(m)
j ) ,

∑

une(i)\ j

1
∑M

m′=1ω
(m)(m′)
i

M
∑

m′=1

ω
(m)(m′)
i

∏

j′∈ne(i)\ j
P̃ j′→i(u j′→i |x(m′)

j′ )Ĩ i(
←−u i , x

(m′)
i ; νi), (31)

ω
(m)(m′)
i =

p(x(m′)
ne(i)\ j , x

(m′)
i |x(m)

j )

p(x(m′)
i )

∏

j′∈ne(i)\ j
sj′(x

(m′)
j′ )
.

After replacingCi→ j with C̃i→ j in the total estimation risk in Eq. (16) and the approximate local communi-

cation rule in Eq.(25), a further approximation denoted by ˜µ j is obtained.

4.4. MC optimization of two-stage in-network processing strategies over UGs

In Sections 4.1–4.3, based on Proposition 3.1, we provided aMonte Carlo framework for approximating

the jth local rule in the pbp optimal form given an arbitraryγ\ j . In particular, we obtained ( ˜µ j , ν̃ j) using the

IS rule with proposal distributions which might be selectedsimply as local marginals.

Once the RHSs of all the expressions in the MC framework are considered as operators, we can approx-

imate all local rules in a strategy simultaneously and plug them into Algorithm 2. The procedure we obtain

with this approach is given in Algorithm 3. Note that, the message passing structure of the computations is

maintained: Before proceeding with the iterations, the nodes exchangeSis with their neighbors. In the first

stage of the iterations, the IS weights of the node-to-node likelihoods are transmitted to the neighbors. It suf-

fices to transmit these sets as arrays of weights for each admissible link symbol sinceSis are already known

to neighbors. In the second stage of the iterations, the costmessages are exchanged, again, as ordered real

arrays for each symbol. The node-to-node likelihood from node i to j is, then, of lengthMi

∣

∣

∣Ui→ j

∣

∣

∣, whereas

that of the cost message isM j

∣

∣

∣Ui→ j

∣

∣

∣. In the examples we present in Section 5, convergence is achieved

after only a few iterations.

Finally, the value of the Bayesian risk function corresponding to the strategy at thelth iteration, i.e.,

J(γl) = Jd(γl) + λJc(γl) given by Eq.s(20)–(22), can be computed approximately by

J̃(γ̃l) =
∑

i∈V
G̃d

i (ν̃li) + λ
∑

i∈V
G̃c

i (µ̃
l
i) (32)

where

G̃d
i (ν̃li) =

∑

←−u i ,m

P̃l+1
i (←−u i |x(m)

i )Ĩ l
i (
←−u i , x

(m)
i ; ν̃li), (33)

G̃c
i (µ̃

l
i) =

∑

−→u i ,m

cc
i (
−→u i , x

(m)
i )p̃(−→u i |x(m)

i ; µ̃l
i). (34)
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Algorithm 3 Iterations converging to an approximate pbp optimal two-stage in-network processing strategy

over a UGG.

1: Chooseγ0 = (γ0
1, γ

0
2, . . . , γ

0
N) ∈ ΓG andε ∈ R

+ ⊲ Initialize

2: l ← 0

3: repeat

4: l ← l + 1

5: for i = 1, 2, . . . ,N do ⊲ (Update Step 1)

Find the node-to-node likelihood messagesP̃l
i→ j = P̃i→ j(ui→ j |xi ; µ̃l−1

i ) at ui→ j ∈ Ui→ j , xi ∈ Si for

j ∈ ne(i) using Eq.s(28) and (14).

6: end for

7: for j = 1, 2, . . . ,N do ⊲ (Update Step 2)

Find the incoming message likelihood̃P j
l by substitutingP̃l

i→ js into Eq. (29).

Find the estimation rule ˜νlj by substitutingP̃ j
l in Eq.(27).

Find the cost messages̃Cl
j→i at ui→ j ∈ Ui→ j , x j ∈ S j for i ∈ ne( j) by using ν̃lj and P̃l

i→ j in

Eq.s(30) and (31).

8: end for

9: for i = 1, 2, . . . ,N do ⊲ (Update Step 3)

Find the communication rule ˜µl
j by substitutingC̃l

i→ js into Eq.s(16) and (25)

10: end for

11: until τ(J̃(γ̃l ), J̃(γ̃l−1), . . . , J̃(γ̃0)) < ε ⊲ Check

In contrary to{J(γl)}, the sequence of approximated objectives, i.e.,{J̃(γ̃l)}, is not necessarily non-

increasing. Nevertheless, note that the error sequenceerr[l] , J(γl ) − J̃(γ̃l) will be identically zero with

probability one asM,P→ ∞. Investigation of an operatorτ (Check step of Algorithm 3) that would yield

a non-increasing error sequence with high probability for finite M,P could be a topic for future work.

5. Examples

In this section, we demonstrate our MC-based decentralizedestimation framework in various scenarios

including Gaussian priors, non-Gaussian priors, and largerandom graphs. We use local marginals as IS

proposal distributions and compare the performances of theoptimized strategies with those of the central-

ized and the myopic estimators. The centralized estimator provides the best accuracy achievable with the
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Figure 3: (a) Undirected communication topologyG considered in the example scenario. (b) Illustration of thecorresponding

Markov Random FieldGX subject to estimation by the decentralized estimation network.

communication cost of collecting the network-wide measurements at a designated center. In the myopic

estimation strategy, all variables are estimated locally using only the local measurements and no communi-

cation resources are utilized.

5.1. A Simple Gaussian Example

We first consider a small network composed of four platforms.A Gaussian random fieldX = (X1,X2,X3,X4)

is of concern and platformj is associated withX j. We consider two-stage strategies over the undirected

graph given in Figure 3(a). The BW constraints are captured by specifying the set of admissible symbols

Ui→ j = {0, 1, 2} for all (i, j) ∈ E.

The online processing, as described in Section 2.1, starts with each node evaluating its communication

function on its measurement, i.e., nodes 1− 4 simultaneously evaluate

u1→3 = µ1(y1), u2→3 = µ2(y2), (u3→1, u3→2, u3→4) = µ3(y3), u4→3 = µ4(y4)

respectively. As soon as all the messages from the neighborsare received, estimation rules are run, i.e.,

nodes 1− 4 evaluate

x̂1 = ν1(y1, u3→1), x̂2 = ν2(y2, u3→2), x̂3 = ν3(y3, u1→3, u2→3, u4→3), x̂4 = ν4(y4, u3→4)

respectively. We design the strategyγ = (γ1, ..., γ4) whereγ j = (µ j , ν j) using Algorithm 3.

We select the communication cost local to nodej as cc
j (u j→ne( j) , x j) =

∑

k∈ne( j) cc
j→k(u j→k, x j) which

satisfies Assumption 1. Here,cc
j→k(u j→k) is the cost of transmitting the symbolu j→k on the link (j, k) ∈ E

and given by

cc
j→k(u j→k, x j) =























0, if u j→k = 0

1, otherwise.
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Hence,U j→k together withcc
j→k defines a selective communication scheme whereu j→k = 0 indicates

no communications andu j→k , 0 indicates transmission of a one bit message. We call this a 1-bit selective

communication scheme and also discuss a 2-bit scheme later in this section. The estimation error is penal-

ized bycd
j (x j , x̂ j) = (x j − x̂ j)2. Hence the total cost of a strategy isJ(γ) = Jd(γ) + λJc(γ) whereJd is the

MSE andJc is the total link use rate.

The random field prior is a multivariate Gaussian, i.e.,x ∼ N(x; 0,CX) whereN denotes a multivariate

Gaussian with mean0 and covarianceCX. This distribution is Markov with respect to the graphGX in

Figure 3(b). The covariance matrix is given by

CX =


























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














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
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


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


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













































. (35)

Note that Algorithm 3 is valid for any arbitrary selection ofthe undirected communication topology that

is not necessarily identical to the Markov random field representation ofX. Here, for the sake of simplicity

we select the UG topology in Figure 3(a) to have the same structure as the MRF in Figure 3(b).

For the noise processesn j for j ∈ V, Assumptions 2 and 3 hold withp(y j |x j) = N(y j ; x j , 0.5). Consid-

eringCX, each sensor has an SNR of 6dB.

The initial local estimation rule is the myopic minimum MSE estimator which is based only ony j , i.e.,

ν0j (y j ,
←−u j) =

∫ ∞
−∞ dx j x j p(x j |y j), and the initial communication rule is a threshold rule quantizingy j given by

µ0
j (y j) =































1 , y j < −2σn

0 , − 2σn 6 y j 6 2σn

2 , y j > 2σn .

(36)

Suppose that we use Algorithm 2 and achieve the performance points (Jc(γ∗), Jd(γ∗)) for the converged

strategies as we varyλ. There exists aλ∗ value such that forλ ≥ λ∗, the communication costλJc will

increase to a level that prevents the decrease in the decision costJd achieved by the transmitted information

among nodes to further cause a decrease inJ. In this regime, not sending any messages (selecting the symbol

0) and using the myopic estimation rule will be the pbp optimal strategy. Hence, it is possible to interpretλ∗

as the maximum price per bit that the system affords to decrease the expected estimation error. As we use

Algorithm 3 and increaseλ from 0 we approximate samples from the corresponding pareto-optimal curve

which enables us to quantify the tradeoff between the cost of estimation errors and communication.
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In Figure 4(a), we present the approximate MSE-total link use rate pairs of the converged strategies ˜γ∗

obtained by using Algorithm 3 for varyingλ from 0 with 0.001 steps (black ‘+’s). These points demon-

strate graceful degradation of the estimation accuracy with decreasing communication load in the network.

Specifically, we generate 2000 and 30000 samples fromp(xi ) andp(yi), respectively for obtainingSxi and

Syi . The upper and lower bounds are MSEs corresponding to the myopic rule and the centralized optimal

rule respectively. For the squared error cost, the optimal centralized rule given byE{X|Y = y} yields a

communication cost ofJc = 3Q whereQ is the number of bits used to represent a real number, i.e.,y j ,

before transmitting to the fusion center. Let us consider (J̃c, J̃d) pairs for the 1-bit selective communication

scheme, forλ = 0 (the transmission has no cost). The link use rate is approximately 3.2 bits, which is

far less than the total capacity of 6 bits for the bi-directional topology given in Figure 3(a). Nevertheless,

the MSE achieved by using the strategy designed using Algorithm 3 is significantly close to that for the

centralized rule. The communication stops across the network for the strategy designed usingλ∗ ≈ 0.3 and

the nodes proceed with the myopic estimators for larger values ofλ.

At this point, it is worth mentioning that the converged strategies for different threshold selections in

the initial communication rule given by Eq.(36) yield the same performance with a slight variation due to

Monte Carlo approximations. This indicates that the proposed scheme performs fairly consistently with

different initializations, in this example.

We repeat the same scenario with a different BW constraint: Specifically, we selectUi→ js correspond-

ing to a 2-bit selective communication scheme. The initial communication rules are appropriately modified

versions of that given by Eq.(36) and the approximate performance points obtained are presented in Fig-

ure 4(a) as well12. The tradeoff curves show that, as we increase the link capacities and for small enough

λ values, the pbp optimal strategies for the 2-bit case achieve fair improvements in the estimation accuracy

for the same total communication load.

5.2. A Simple Heavy Tailed Example

In this example, we demonstrate that the MC framework applies for arbitrary distributions provided that

samples can be generated from their marginals. This can be animportant advantage in certain problem

settings in which it is not possible to obtain closed form expressions even for the centralized rule. We

12For these experiments, we use the condition
∣

∣

∣

∣

∣

∣J̃(γ̃l−1) − J̃(γ̃l)
∣

∣

∣ −
∣

∣

∣J̃(γ̃l−2) − J̃(γ̃l−1)
∣

∣

∣

∣

∣

∣ < 1.0e − 2 in theCheck step of Alg. 3.

The minimum number of iterations for convergence is 3 for both the 1- and 2-bit schemes and the resulting averages (standard

deviations) are 3.24(0.43) and 3.11(0.31) for the 1- and 2-bit schemes, respectively.
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Figure 4: The approximate performance points converged revealing the tradeoff together with the lower bounds (blue dashed-lines)

and the upper bounds (red dashed-lines) of the problems given by the estimation performance measured in MSE for the optimum

centralized and the myopic rules respectively. (a) Gaussian UG problem: The estimation network in Figure 3(a) is subject to

optimization through Algorithm 3. The initial strategy achieves (Jc(γ0), Jd(γ0)) (black ‘x’). The pareto-optimal performance

curves, achieved for the approximate pbp optimal strategies whileλ is increased from 0 with steps of 0.001, are approximated by

{(J̃c(γ̃∗λ), J̃d(γ̃∗λ))} whereγ̃∗λ is the approximated optimum strategy forλ. Results for 1 and 2 bit selective communication schemes

are presented. (b) Heavy tailed (Laplacian) prior problem with a UG: We demonstrate the variation of the approximation over

different sample sets for a heavy tailed prior through the performance points achieved using Alg. 3 with various values ofλ and 10

sample sets for eachλ.

consider such a scenario in whichX is distributed by a heavy tailed priorp(x), specifically a multivariate-

symmetric Laplacian (MSL) given by

p(x) =
2

(2π)d/2|Cx|1/2

(

xTC−1
x x

2

)1−d/2

K1−d/2(
√

2xTC−1
x x) (37)

whered is the dimension ofx, Cx is a covariance matrix, andKη(u) is the Bessel function of the second

kind of orderη (see, e.g., [39]). Let us denote this density byS Ld(CX). Unlike the Gaussian case, un-

correlatedness does not imply independence and not being a member of the exponential family,S Ld(CX)

does not admit a Markov random field representation. On the other hand, it is possible to generate sam-

ples from an MSL utilizing samples generated from a multivariate Gaussian of zero mean and the desired

covariance matrix together with samples drawn from the unitunivariate exponential distribution, i.e., given

x′ ∼ N(x′; 0,CX) andz∼ e−z, generate samples ofX by x =
√

zx′, thenx ∼ S Ld(Cx).

Similar to that in the previous section, we assume the underlying communication structure described by
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G = (V,E) in Figure 3(a) together with a 1-bit selective communication scheme, and similar cost functions,

observation likelihoods, and initial local rules. To the best knowledge of the authors, for an MSL prior and

Gaussian likelihoods, even the centralized paradigm failsto provide a solution without employing numerical

approximations.

We considerX = (X1,X2,X3,X4) such thatpX(x) = S L4(CX) whereCX is given by Eq.(35) and we

exploit the fact that thejth marginal density ofS Ld(CX) is given byS L1([CX] j, j). It is straightforward to

generate samples from these marginals [40]. Sample sets from the observation distributions are obtained

using the scheme in [20].

In this example, we also demonstrate the variation of the results over different sample sets, so, we gen-

erate 10 different sample sets such that
∣

∣

∣S j

∣

∣

∣ = 3000 and
∣

∣

∣Q j

∣

∣

∣ = 45000. Using these sets, we run Algorithm 3

for different choices ofλ (as opposed to using a single sample set and small incrementsof λ as in Sec-

tion 5.1). In Figure 4(b), approximate performance points for the converged strategies are presented. The

upper and lower bounds are the MSEs corresponding to the myopic and the centralized rules, respectively13.

For each value ofλ, collective results based on the 10 sample sets provide a sample-based approximation

to the performance point (Jd(γ∗), Jc(γ∗)) on the tradeoff curve14. These sample-based results form clus-

ters with reasonable variability which can be interpreted as an indication of their approximation quality. It

is reasonable to expect this level of variability since heavy tailed distributions require utilization of larger

sample sets. Nevertheless, the proposed MC framework provides distributed solutions in problem settings

which do not admit straightforward solutions even in the centralized case.

5.3. Examples with Large Graphs

In this section, we demonstrate Algorithm 3 in relatively large scale random field estimation problems.

Specifically, we consider problems set up by randomly deploying 50 platforms over an area of 100 unit

squares. Each sensor locationsj ∈ R
2 is associated with a scalar random variable,X j. We assume that

the random fieldX = (X1,X2, ...,X50) is Gaussian with zero mean, i.e.,x ∼ N(x; 0,Cx) andCx = [Ci, j ] is

13In the MSL prior-Gaussian likelihoods problem, the evaluation of the myopic and centralized strategies and the corresponding

MSEs require numerical approximations for which we utilizeMC methods as well.
14Note that, (Jd(γ∗), Jc(γ∗)) is the performance of the pbp optimal strategyγ∗ for the Bayesian risk corresponding toλ, i.e.,

J(γ∗) = Jd(γ∗) + λJc(γ∗).
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selected as the Matérn covariance with nugget effect given by [41]

Ci, j =























(

σ2/2(η−1)Γ(η)
) (

2
√
ηh/φ

)η
2Kη

(

2
√
ηh/φ

)

, h > 0

τ2 + σ2, h = 0
(38)

whereh ,
∥

∥

∥si − sj

∥

∥

∥ is the distance between sensorsi and j, Kη is a modified Bessel function of the second

kind of orderη, τ2 is the nugget effect,φ is the effective covariance range andσ2 is referred to as the partial

sill15. The covariance function for the particular set of parameter values we use in our experiments can be

seen in Figure 5(b). The variances ofX js are given by the covariance function evaluated ath = 0 which is

unity. The covariance matrixCx for the deployment in Figure 5(a) is given in Figure 5(c). Theinverse ofCx

contains no zeros and, hence, this model cannot be exactly represented by a sparse Markov Random Field.

The undirected communication topology in Figure 5(a) is found by sparsifying the Gabriel graph of the

deployment. We consider a one-bit selective bi-directional communication scheme which yields 128 bits

total capacity with this UG. We initialize the nodes withquantizationrules for communications and myopic

estimators. We select a communication cost similar to that we have used in the previous examples and

squared error as the estimation cost. We use
∣

∣

∣S j

∣

∣

∣ = 2000 and
∣

∣

∣Q j

∣

∣

∣ = 30000 samples from local marginals in

Algorithm 3.

The measurement noise for each sensor is Gaussian with varianceσ2
nj
= 0.25 leading to 6.02dB signal-

to-noise ratio (SNR) given by SNR= 10 log10σ
2
j /σ

2
nj

. The myopic MSE is given by MSE= σ2
jσ

2
nj
/(σ2

j +

σ2
nj

) which equals to 0.2. In order to demonstrate the efficacy of the optimized two-stage strategies in

comparison with the myopic estimator and the centralized estimator, we define an MSE equivalent SNR as

SNR = 10 log10(σ
2
j − MS E)/MS E. This quantity, in a sense, is the SNR of a sensor which would yield

the given MSE value when it is used with a myopic estimator. From this viewpoint, a two-stage estimation

strategy can be viewed as being equivalent to replacing eachsensor with its SNR-improved version in a

myopic strategy.

We consider sensors 17− 23 in Figure 5(a). In Figure5(d) we present the benefits of thetwo-stage

strategies designed using Algorithm 3 in terms of the improvement in the MSE equivalent SNRs for different

values ofλ. The upper bounds are achieved by the centralized estimator. Nodes 18−23 have closely located

neighbors with highly correlated local variables. Asλ is decreased, communication is utilized more, and,

consequently an improvement as much as more than half of the myopic-centralized SNR gap is achieved.

Node 17 is more distant to its neighbors and benefits less fromthe incoming information.

15Various forms of Matérn covariances are commonly used in spatial data modeling [8].
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Figure 5: Set up for experiment involving 50 randomly deployed nodes: (a) Randomly distributed sensor nodes and the UG

communication topology obtained by sparsifying the Gabriel Graph of the deployment. (b) Matérn covariance function (Eq.38)

used in the experiments (τ2 = σ2 = 0.5,ν = 4,φ = 15). (c)Cx obtained for the deployment in (a) with the covariance function

in (b). (d) The myopic and centralized-equivalent SNRs of sensors 17− 23, and improvements achieved by optimizing the two-

stage strategy with Algorithm 3 for different values ofλ.

The overall estimation and communication costs of this network are given in Figure 6(a) for different

values ofλ and five different sample sets for each. Note that, the cost of communication for the improve-

ment upon the myopic MSE is on the scale of tens of bits which isextremely small as compared to the

cost of collecting network wide measurements at a designated node for centralized estimation. The per-
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formance points for different sample sets form clusters around the points from the pareto-optimal curve

they approximate in a way similar to the example in Section 5.2 and the results given in Figure 4(b). The

variations of the clusters indicate a fairly good quality ofapproximation. We verify the consistency of our

algorithm in the performance of the designs by using four additional deployments. For each deployment,

the diagonal ofCx, and, hence, the myopic performances are the same with that of the other three networks.

The MSEs of the centralized rules, on the other hand, differ as well as the total network capacities16. We

present the approximate MSE-total link use rate points forλ = 0.005 and 0.05 and for 5 different sample

sets in Figure 6(b)17. It can be observed that, the converged strategy improves the MSE performance in

comparison with the myopic rule for all of the UGs with a fair amount of variability in the results. This

suggests that our algorithm performs consistently across avariety of random network structures. The gains

in the estimation accuracy in this example are fairly significant considering that only 1-bit transmissions

are used. Our experiments also show thatλ effectively controls the trade-off between estimation accuracy

measured with MSE and the communications load in bits in large scale problems as well.

6. Conclusion

In this work, we have been concerned with the design of decentralized random field estimation strate-

gies for sensor network applications. We constrain the feasible set ofonline strategies by the availability

and BW of the links and use a design objective which allows us to trade the (possibly energy) price for com-

munication off with the estimation accuracy. Person-by-person (pbp) optimal solutions to such problems

can be found usingoffline iterative message passing algorithms which fit well into ourcontext. In estima-

tion problems, however, the optimization procedure as wellas the pbp optimal local rules involve integral

operators which cannot be evaluated exactly, in general. Wehave introduced a Monte Carlo framework

which circumvents this problem and leads to a feasible decentralized optimization scheme while preserving

the message passing structure. The proposed algorithm features scalability with the number of platforms as

well as the number of variables involved. We have demonstrated these features through several examples

including a Gaussian problem, a non-Gaussian prior problem, and random large graph scenarios. We have

presented trade-off curves relating the MSE of estimation and the network wide communication load in bits.

One possible extension of this work is to investigate such strategies in settings involving broadcast com-

munications with the nearest neighbors, unreliable channels, latency, sparse measurements and estimation

16The capacities corresponding to the deployment instances UG 1–4 are 132, 130, 134, and 140 bits, respectively.
17The number of iterations for convergence has a minimum valueof 3, a mean value 4, and a standard deviation of 1.1.
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Figure 6: Algorithm 3 for five random UGs and for five sample sets for each deployment:(a) Performance points obtained for the

UG in Figure 5(a). (b) Performance points obtained for four additional random UGs. The parameterλ is selected asλ = 0.005, 0.05

considering a 1-bit selective communication scheme and squared error estimation error penalty for all of the nodes. Note that the

myopic MSE (showed by a solid red-line) is the same for all deployments whereas the centralized MSE (the lower bound) varies

for each deployment.

of a random field over a grid. Another line of investigation would be to consider settings in which the

random field prior evolves as a Markov process. Different in-network processing strategies can also be de-

veloped such as the hybrid in-network processing strategies (see [42] for such a perspective on the detection

problem) employing both the class of strategies consideredin this paper and strategies over DAGs [20].

It might also be worthwhile to consider the problem of selecting the communication graph structure that

yields the best pbp optimal strategy given ana priori distribution.
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