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Abstract

We propose a hew methodology for designing decentralizedora field estimation schemes that takes
the trade€ between the estimation accuracy and the cost of commumisatnto account. We consider
a sensor network in which nodes perform bandwidth limited-twvay communications with other nodes
located in a certain range. The in-network processingsstaith each node measuring its local variable
and sending messages to its immediate neighbors followeslélyating its local estimation rule based
on the received messages and measurements. Local rule desttis two-stage strategy can be cast as
a constrained optimization problem with a Bayesian riskiwapg the cost of transmissions and penalty
for the estimation errors. A similar problem has been preslip studied for decentralized detection. We
adopt that framework for estimation, however, the corradpay optimization schemes involve integral
operators that are impossible to evaluate exactly, in génele employ an approximation framework
using Monte Carlo methods and obtain an optimization proeedased on particle representations and
approximate computations. The procedure operates in eagegmssing fashion and generates results for
any distributions if samples can be produced from, e.gaginals. We demonstrate graceful degradation
of the estimation accuracy as communication becomes mat/.co
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1. Introduction

Wireless sensor networks have been a promising technotogleploying a large number of sensor plat-
forms over a region to gather dense spatial samples of aqatygienomenori1]. Applications including
environmental monitoring, structural monitoring [2] anc@sion agriculturel [3] benefit from wirelessly
networking these platforms in an ad-hoc fashion which caa ebllect measurements in possibly multiple
modes induced by multiple quantities of interest. Therecaigdlenges in design because the sensor plat-
forms have limited computational and energy resources laadiriks over which they can communicate
are bandwidth (BW) limited. The dispersed nature of theesyishecessitates some communications for
processing the measurements, however, the energy cosinshiitting bits is usually greater than that for
computing theml|4]. Therefore, it is crucial for the feabipiof a sensor network to take the estimation-
communication tradets into account while performing collaborative “online” (@1—network) processing
of the measurements in the netwark [5].

In this context, we are concerned with designing deceamtdliprocessing schemes for random field
estimation under a set of communication constraints. Im#te/ork structure we consider, the platforms
perform local communication with their neighbors locatethim a certain range and form a connected ad-
hoc network with BW limited links. We are particularly ingsted in the tradébbetween the estimation
accuracy and the cost of trasmissions given the link topoldgansmission costs might include the energy
cost of communications through, e.g., an energy dissipatiodel for transmitting and receivirigbits at a
distance ofd metersi[5].

Subject to estimation is a set of spatial random variablasekhibit a correlation structure. Examples
of physical phenomena that can be modeled with such randdds fieclude turbulent flow (Chp. 12 of
[[@]) and geostatistical datal [8] such as temperature measents over a field (Chp. 1 afi[9]). There is a
variety of lines of investigation on random field estimatiwith sensor networks. In-network processing
schemes based on adaptive hierarchies (e.9., [10]), adgstyfusion center (FC) receiving quantized mea-
surements (e.g..[11]), and iterations involving FC fee#tldd.2] have been considered. These treatments
cannot pose an in-network strategy design problem thaicikpltakes the tradeds into account and are
not decentralized in that not all of the nodes contributeh @stimation task but only one or more FCs.
Estimation of dynamic random fields through Kalman-Bucyfilig (KBF) is considered in_[13] and |14].
In particular, [14] introduces a distributed realizatidrihee KBF, whereas [13] considers an FC that collects

measurements from sensors after finding a reduced modettmharsubset of the sensors are queried based
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on a surrogate communication costs and an estimation ger@lir problem setting éliers in that we are
concerned with completely decentralized strategies amd, static problem, consider the trad@&{zetween
the estimation accuracy and the communication load of theark.

Decentralized estimation in sensor networks has also ladied using probabilistic graphical models
(see, e.g./[15] and the references therein). In this appr@probabilistic dependency graph of the random
field is mapped onto the communication topology. The in-oetwprocessing strategy then becomes a
message passing algorithm which communicates probadi$ityibutions. However, model approximations
together with message coding and censoring to facilitatedoergy digital transmissions complicate the
performance analysis [16]. As a result, it is not straighwfard to state a design problem that takes the
network topology and the communication cost into accouimguthis perspective [17].

We consider a class of in-network processing strategieshwperate over an undirected communica-
tion topology and yield a rigorous communication consedidesign problem through a tractable Bayesian
risk. In particular, the platforms specify the vertex sed d@ine undirected edges represent bi-directional
communication links with finite alphabets sizes of which @lated to the BWs. The nodes estimate a (set
of) random variable(s) possibly related to a random field ehdhsed on the platform locations through
a two-stage procedure: In the first stage, each node makessureenent and produces messages to its
neighbors using its communication rule. In the second stages estimate their associated random vari-
able(s), based on both the incoming messages and their ragasts. The design problem involves finding
the communication and estimation rules for the nodes argliit the form of a constrained optimization
problem in which the objective function is a Bayesian ris&tthenalizes both estimation errors and the
transmissions, and the feasible set of strategies is @nstt by the corresponding graph representation
that captures the availability and the capacity of the links

A similar problem has been recently studied in the contextemfentralizedietection[lL&] based upon
the results for another class of strategies — those overtdiaecyclic graphs (DAGs)(see alsol[19]). One
appealing feature of this approach is that the solution ¢éodésign problem can be realized as a message
passing algorithm which fits well into the distributed systeequirements of a sensor network. We have
considered the design of decentralizstimationstrategies over DAGs in_[20], and introduced an approx-
imation framework through Monte Carlo (MC) methods in ortteovercome the diculties arising from
the fact that the variables of concern take values from namtberable sets in the estimation case. This

paper difers from recent work taking a similar distributed inferepeespective in that we consider estima-



tion problems (rather than detection problems a5 inl[118219,over undirected graphs (UGs) (rather than
DAGs as inl[20]).

The contribution of this paper is an adoption of the aforetivaed approximation framework for the
class of (decentralized) two-stage estimation strategves UGswhich we believe is a good match for
random field estimation scenarios. Doing that, we transfarfiream Decision Theoretic (TDT) iterative
strategy optimization to a computationally feasible MCimmiation algorithm which employs nonpara-
metric representations of the underlying distributionse &l60 maintain the benefits of the TDT solution
and, as a result, our approach features the following: ,Rhit framework enables us to consider a broad
range of communication and computation structures for #gsgth of decentralized estimation networks.
Second, in the case that a dual objective is selected as atwdigum of the estimation performance and
the cost of communications, a graceful degradation of tlismaton accuracy is achieved as communica-
tion becomes more costly. The resulting pareto-optimave@nables a quantification of the trafeof
concern. Under reasonable assumptions, the optimizataregure scales with the number of platforms as
well as the number of variables involved. Moreover, it candadized as a message passing algorithm which
is an appropriate computational structure for network-eggfinization. The MC optimization scheme we
propose features scalability with the cardinality of thenple sets required and can produce results for any
set of distributions provided that independent sampleseagenerated from, e.g., the marginals.

In Section[®2, we introduce the design problem in a constdaomimization setting, and then we de-
scribe the Team Decision Theoretic investigation of itsisoh in Sectiori3. We present our MC optimiza-
tion framework for two-stage in-network processing sgae over UGs in Sectidd 4. Then, we demon-
strate the aforementioned features through several emrirpSectio& Finally, we provide concluding

remarks in Sectiofl 6.

2. Problem Definition

In this section, we start introducing the problem settinthwome basic definitions. Then, in Secfiod 2.1
we present the two-stage in-network processing schemeaovandirected communication topology. In
SectiorZP, we state the strategy design problem as a aorestroptimization problem taking into account

the communication constraints. This problem is to be sobf#ide, i.e., before processing the observations.

2The preliminary results of the proposed scheme appearlin [22



We considerN sensor platforms dispersed over a region. Each node cabligistaommunication

links with some of the other nodes within its communicatiange. These links are bi-directional and the

communications structure can be represented by an uretirgcaphs = (v, ) in which each platform is

associated with a nodes V. Anedge |, j) € € corresponds to a finite capacity one-way link from platform

Table 1: Nomenclature for the in-network processing strate
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ui—)j

c(u, X, X)

J)

Undirected graph of the set of nod&sand the set of bi-directional communication

links &.

Random variable associated with node

Random variable modeling the measurement taken by node
Joint random variable modeling the estimation problem.
Realization ofX; in the joint event.

Measurement taken by noge

Estimated value okj drawn by nodsg.

Message symbol from nodeo j.

Set of admissible symbols from nod® j.

Vector of messages from nodeo its neighbors.

Vector of messages to nodgdrom its neighbors.
Communication rule of nodjaoutputting—dj.

Space of feasible communication rules for ngde

Estimation rule of nodg outputtingXj given {;, ﬁj).

Space of feasible estimation rules for ngde

The local rule pairgj, vj) nodej.

Space of feasible local rule pairs for nofs G.

In—network processing strategy as a concatenation ofal lules.
Space of all feasible strategies oger

Cost of the communication vectarand the pair X, X).

Bayesian risk ofy.




i to j. The bi-directionality is captured by using a UG represtmain which (, ) e & < (j,i) € &. A
particular example of such a network can be seen in FlduiEb&ectiorl5.B.

On the edgei( j), nodei transmits a symbal;_, j from the set of admissible symbadlg_,;. For example,
in order to model a link with capacity lggl; bits, one can seled;_,; such thathxli_)jl = dj. In order to
represent the “no transmission” event in censoring or feeecommunication schemes, one can insert an
additional symbol intcl{;_,; such as 0. We note that, as bothjJ and (i) € &, the variables;_,; andu;_,
are symbols in opposite directions over the same link.

Associated with each sensor platform is a set of variabledetimy, e.g., the temperature, humidity,
or the flow vector at possibly the position of the platform.t lus denote a concatenation of variables
associated with nodgby Xj and the set it takes values from K. In principle, there is no restriction on
the dimensionality oK, i.e., dimXj) > 1. All random variables to be estimated can be representédawi
concatenatiorX = (X, Xo, ..., Xn) which takes values froX = X1 x X2 x ... x Xy. For example, for real
valued random variables{; = R andX = RN, It is worth reminding that, in the detection setting;s are
M < oo element sets for M-ary detection.

Node j collects measuremend§ using its onboard sensor¥; € Y; whereY; is nondenumerable,
as well. All observations collected by the network is deddtg Y = (Y1, Y2, ..., Yn) and resides i/ =
YixYrX..xYUn.

The probabilistic model underlying the estimation problsmepresented by the random variable pair
(X Y). Itis characterized by the joint cumulative distributifumction Px v(X, y) with the densitypx y(X, y)

for arealization X,y) = (X1, ..., XNs Y1, -os YN)-

2.1. Two-stage in-network processing strategy over untigegraphs
Suppose we are given a UG communication topolggy (V, E). The neighbors of nodegis given by
ne(j) £ (i | (i, j) € EA(j,i) € E}. Let us denote the set of outgoing messages from fadéts neighbors

by U; £ {uj-i | i_€ ng(j)}. Then,U; takes values fron'?(,- = @;(_)(L(j_,i where® denotes consecutive
ieng(j
Cartesian produdis Being at the receiving end of the links from its neighborsjej collects the incoming

messages denoted ﬁ/, = {Uij | i € ng(])} and take values fror<f1]_1j = 62(') U;,j. The messages across
ieng(j

the network are similarly given by = {ui; | (i, j) € &} and reside irid = ' %eaﬂi_}j.

At this point, it is worthwhile to point out that we implicitlassume the links i are error free so

that the symbols transmitted (or lack thereof) from neighlawve exactly restored at the receiving end. This

% In other words, e.gX = X1 x Xo x Xz andX = (%3)(\1 are synonymous.
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is for the sake of simplicity throughout the article and itrideed possible to accommodate an unreliable
channel model capturing link errors and packet losses lplgstile to noise and interference in this network
model [18f.

We continue our discussion by specifying a two-stage ojggrdhat ensures a causal online processing
without deadlocks: In the first stage, having obseryed Y|, node| evaluates its local communication
rule defined by : Y — ‘flj and produces outgoing messages to its neigHbdkﬁer receiving all the
messages from its neighbors, nopeerforms the second stage in which it evaluates its estomatile
given byv;j : Y x fl_lj — Xj to draw an inference on the valug takes based on the observatignand
the incoming messages; from neighboring nodes. Hence, the local rule of ngde a pair given by
¥j = (uj,vj). The objective of designing; is the topic of Sectiof 2.

Based on the previous definitions, the space of all firstesf@pmmunication) rules is defined as
Mjg S ujlu Y- fz)(j}andthe second-stage (estimation) rule space is givetﬁjgoy@ vjlvj: Y ><<‘L_(j - Xj}.
Consequently, the space of rules local to ngde given byr¥ £ MY x N¥. The process from nodgs
point of view is illustrated in FigurE[L{ga).

We define strategies over the entire network by aggregatiogl rules: A first-stage communication
and second-stage estimation strategy pair(u, v) is defined ag = (u1, u2, ..., un) andy = (v, vo, ..., vn),
respectively. We refer tg = (y1,v2, ..., ¥n) @s a two-stage strategy. The space of two-stage strategges
G is given byTY9 = Vgorvl"g. It can be seenthdt’ = {y | y : ¥ — X x U}. Here,y € I'Y is restricted
to the strategies which producee U in accordance with the netwo®. Consider the set of strategies
v Y — X x U which do not takal into account. For example, the centralized estimator whmérates
over the joint posterior is such a strategy. If we denote ¢i@&u unrestricted strategies by thenI'9 c T.
The global view of the strategy is illustrated in Figlfe 1 (b)

The networked constrained online processing model aboveidas an abstraction of the subtleties
related to the physical, network and other lower layers ef tbommunication architecture. There has

been a considerable amount of work on networking sensohsdimg connectivity controll[23], Medium

“4In particular, [18] introduces an additional varialgjas the channel output to nogleThis variable can be treated as a function
of the messages sent from the neighbwgg) and characterised by a conditional distributip(rzjmj). Examples in which this

distribution is specified for modeling binary erasure ctesmand broadcast channels with interference can be fouiidjn
®Note that a variety of transmission schemes can be repesbéyiy; such as “broadcast” and “peer-to-peer”. In order to

model the formeﬂ_}j can be replaced with its subset which contains identicabagess for all neighbors. Our setting falls into the

peer-to-peer type communication in this perspective.
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Figure 1. Two-stage in-network online processing strategsr an UGG = (V, &): The viewpoint of nodg in G which
evaluates its first-stage communication rujebased on its measuremeyjt In the second-stage; is evaluated at the incoming
message§, j andy; and an estimatg; is produced[ () The global view of the two-stage strate@r ghwhere a random vectot

takes the valua as the outcome of an experiment and induces observations

Access Control{[24] and multi-hop routing protocols enadpliransmission between any two nodes (see,
e.g., [23][25],[26]). Therefore, a higher level architeet underpinning the two-stage strategy can be de-
signed using an adequate combination of these results sid@ation of the application specific require-

ments [2]7] 28]. For the cases that the transmission erratgacket losses cannot be ignored, channel

models characterizing these possibilities can be useckioriline model as discussed previously.

2.2. Design problem in a constrained optimization setting

Given an arbitrary UGz, the selection of a two-stage strategy frd is based on a Bayesian risk
function J(y) wherey = (u,v) € I'Y, is constructed as follows: One can select a @ostich that an
estimation error penalty for the pai, ) and a cost due to the corresponding set of messages in therket
u are assigned, i.ec,: U x X x X — R. For an arbitrary strategy € I'9, the corresponding Bayesian risk
is given by

I0) £ E{c(U.X X); 7} = E(E (). X (X u(V) Y} (1)

Selection of the best two-stage strategy for estimatioruodmmunication constraints is, hence, equiv-

alent to solving the constrained optimization problem giieg

P): minJ(y) 2)

subject toy € T'Y
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The distribution underlying the expectation i (1) is sfiedi byy through the density(u, Xly; y) and

the equation

BU, % X, 7) = f dyp(u, RY; 7)P(y, X, 3)
A

which can be shown after realizing that the tupleX) = y(Y) is a random vector conditionally independent
of X givenY (denoted by ¢, X) 1. X|Y ) provided thaty = (y1, ..., yn) € I'Y is known. Then, the density
p(u, Xly) is specified by and denoted byp(u, XJy; v).

Let us consider how local communication and computatioesribke part in this density: Once the
local rule pairy; = (uj,v;j) is fixed, the conditional density of the outcon‘qa@j,f(jlyj, ﬁj;yj) becomes

specified. By the two stage mechanism, this density decoesdosther as
(. Xilyj. Ui vp) = pCUlyj; ) PR ly;s Ty vg).

The distributionp(u, Xly; v), then, builds upon the local rule pairs following the cdywsacessing pro-
vided byy and the following factorization holds:
p(u. &y; ) = [ | oy ) p(ily;, T35 v). (4)
jev
In Problem (P), it can be shown that if there exists an optistategy, then there exists an optimal
deterministic strategy [29]. Therefore itfiues to consider the deterministic local rule spaces for kwhic

case the local first and second stage rules specify the @snsiolved in Eq{4) as follows:

PCU 1Y} 1)) = Sty (U ) )

p(ily;. U5 vi) = o(%; — vily;, T))) (6)

wheresm(n) is the Kronecker delta antlis the Dirac delta distribution. After substituting EJ.3 énd [6)
into Eq.[4) and Ed{3), the distribution underlying the Bsian risk is specified.

We provide a table of symbols introduced in this section ibl@8l for helping the reader throughout

the rest of the article.

3. Team Decision Theoretic Formulation

Problem (P) in[(R) is a typical team decision problem [30]islbften not possible to find solutions

with global optimality guarantees(see, e.Q.) [29]). A aament solution approach which has been used
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Algorithm 1 Iterations converging to a person-by-person optimal exgrat
1: Choosey? = (yg, yg, ...,y,%) eI'Y ands € R* >Initialize

2.1l «0
3: repeat
4; l—1+1

5: for j=N,N-1,...,1 do

6 )= argyﬂrg] JOTS s YL Yis Vs o VN > Update
i€l

7. end for

8: until ') -JIG) <e > Check

in a variety of similar contexts including quantizer designminimum distortion|[31} 32] and distributed
estimation |[33]_34] is to use necessary (but ndfisent) conditions of optimality to achieve nonlinear
Gauss-Seidel iterations converging to a person-by-pefisop) optimal strategy [291[18]: At the pbp op-
timal pointy* € I'Y, it holds thatJ(y’j*,y(j) < J()’j,’ytj) for all yj € Fjg where\j denotesV \ j and
yi‘j = {175 ...,y]-‘_l,y]-:l,...,yr\l . In other words, no improvement t&{y*) can be obtained by varying
only a single local rule/]f. The strategies that satisfy this equilibrium conditioa smlutions to a relaxation

of (P) in which one is interested in finding = (y], ..., y5) such that
Y= argyrjglrr;J(y,-,y\ ) (7)

for all j € {1,2,...,N}. The strategyy* is referred to as a pbp optimal strategy. The iterationsrglve
Algorithm[ converge to such a solution starting with an tagoy set of local rules.

It is useful to note that the converged strategy depends eimttialization, in general. Therefore, it
is a good practice to start the iterations with a reasonaierson of initial rules and use Algorithf 1 to
improve upon them. For the example scenarios presentedciinSH, the iterative approach delivers a
consistent performance withfterent initializations.

For thedetectionproblem, an extensive study of pbp optimal solutions for miper of strategy classes
can be found in[18]. One of these classes exhibits direatgdia communication and computation struc-
tures and can equivalently be represented by DAGs [19]. dtlfeeen shown that in the case of two-stage
strategies over undirected communication topologies,qgtipnal set of local rules lie in a finitely param-

eterized subspace &¥F, and hence errors involved in their computation is mainlg ¢ finite machine

SWhen itis clear from the context, we dendte| i € 1} by x, wherel is an index set for the collection of variables, Xo, ..., Xy}

10



precision. This is partly becau3gs of a detection problem, contrary to the estimation settizie values
from finite sets. The communication and computation stnectl a two-stage strategy can equivalently be
represented through a bipartite graph (Chp. 4 of [18]). Swephs are directed and acyclic structures and,
hence, two-stage rules can be investigated using the sésuthe detection problem over a DAG (provided
that certain assumptions hold).

In our estimation setting over an undirected graph, we follosimilar approach and exploit the pbp
optimality condition for decentralized estimation stpags over DAGsL[2Q]5.

We start by unwrapping the communication and computatiutsire of two-stage strategies over undi-
rected communication topologies onto directed acycliabiige graphs. The two-stage operation enables
us to represent the same platform with two nodes @edint types. The nodes of the bipartite graph
B = ((V,V),F) are identified by considering the set of nodes in the untiicegraphg, i.e.,V, and its
replicate’V” £ {j’ | j € V } as a pair and assigning the communication rules and theaigiimrules tgV
andV”’, respectively. The edges of the bipartite graph connechuanication nodes if¥’ to the estimation
rules of the neighbor nodes fi’. In other words, |,i") € ¥ if i € ng(j) in G. For example, consider the
undirected communication topology given in FiglFe (a)e Tho-stage strategy over this UG is explicitly
shown in FigurdZ(®). The unwrapped directed acyclic comoation and computation structure of the
two-stage strategy which is a bipartite graph is shown iufégf{c). Nodes * 4 in <V perform only the
communication rules, i.eu;s. Likewise, nodes’t- 4’ in V’ are associated only with the estimation rules,
i.e., vjs. Nodej and j" correspond to the same physical platform buteslent processing tasks, in this
respect.

At this point, it is useful to contrast the two-stage stratdgsign problem with that for an FC estimator
in a star-topologyl[33]. In the conventional setting, theide goal is to find an estimation rule for the FC
and quantizers for the peripheral sensors which minimieeettpected cost of estimation errors. The FC
receives messages from all of the other sensors, howewvamuaication is not penalized. The two-stage

strategy we consider decentralizes the estimation taskviayathat each node can be viewed as a local FC

"In principle, it is possible to obtain the estimation resyitesented in this section starting from the detectiorltsesL{18] and
performing the marginalizations in the variabks andes through appropriate integrations (as opposed to sumngtimder
error-free and “peer-to-peer” transmission assumptidngart because;s are nondenumerable, our problem, contrary to the

detection setting, does not lead to pbp optimal local rdies ¢an be characterized with a finite set of parameters,riergé
8In the case of a dynamic problem in whigkix) varies over time, the strategies can be updated accoydihglestigation of

efficient methods for updating strategies in dynamic problentsfi beyond the scope of this work.
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(©)

Figure 2(@) A loopy UG of 4 nodeE_{b) The two stage stratagy the UG[{d) The bi-partite DAG counterpart of the twoggta
online processing: Nodes 1-4 correspond to platforms 1+éiy performing the communication rules, whereas nodeg’ 1

correspond to platforms 1-4 but only performing the estiomatules.

with its neighbors as peripherals (e.g., the estimatioreadd- 4’ in Figure[Z(d) can be viewed as FCs of
their local networks) and the communication rules are nsiriced to quantizers. These star networks are
coupledin the two-stage strategy design as all the estimation andramication rules that constitute the
strategy are considered jointly through the cost functighx, u).

Next, we make a set of assumptions:

Assumption 1. The global cost function is the sum of costs due to the conuatiom rules and the decision

rules, which are in turn additive over the nodes:

c(u%X) = c4(%X X +AcS(u, X) (8)
%X = ) cl(%x)

154
U = ) c(dix)

154

Here, 1 appears as a unit conversion constant and can be interprasetthe equivalent estimation penalty
per unit communication cost[18]. Hencé = Jy(y) + 1Jc(y) where J(y) = E{c%(X, X); v} and X(y) = E{c°(u, X); }

respectively.

9Note that convex combinations of dual objectives, J&y) = aJy(y) +(1—a)Jc(y), yield pareto-optimal curves parameterized
by @. This setting preserves the pareto-optimal front sihee(1 — @)/a andJ(y) « J'(y) yielding a graceful degradation of the

estimation performance asis increased.
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Assumption 2. (Conditional Independence) The noise processes of the@sease mutually independent

and hence given the state of X, the observations are condltjoindependent, i.e.,(R,Y) = p(X) Hi’\i 1 P(YilX).
Assumption 3. (Measurement Locality) Every node j observeslye to only X, i.e., dy;|x) = p(y;lX;).

Under these conditions, it is possible to apg@wrollary 3.4 in [20], which reveals the structure of
the pbp optimal local communication and estimation rulestmategies over DAGs, to the bipartite rep-

resentation of the two-stage strategies. Before statiisgréisult, let us define two-step neighborsjdfy

N€(j) £ Vienaj)ne(i) \ .

Proposition 3.1. (Adaptation of Proposition 4.3 in_[18] for estimation) Sugge that Assumptio$[]-3 hold
and suppose we are given a pbp optimal two-stage strategy(y;, ...yy) over an undirected graph. If all
the local rules other than thé"jare fixed at the optimum point, th® pptimal rule can be characterized as

follows: The communication rule (evaluated at stage-oagjiven by

Ki(y;) = arg min f o pOY; %) (T, % Ve M) ©
ﬁje"uj Xj

for all y; € ¥ with nonzero probability, where
aj(U}, x;; V;e(j)’/“‘:eZ(j)) o p(Xj)[ﬂC,g(_dj’ X)) + Cj(Uj, x;; V;dj)’ﬂ:ez(j))]‘ (10)
The estimation rule (evaluated at stage-two) is given by
Vit @) = arg min [ P8 055 T (11)
for allyj € ¥j and for all U € fl_lj with nonzero probability where
Bi(Xis Xis Uji g y) o POG)P(T1Xj: iy )5 (%4, X5). (12)
The term I?(ﬁ”xj;u;e(j)) in Eq.I3)is the (incoming) message likelihood and given by
Pj(ﬁjlxj;,uﬁe(j)) = fx AXne(j) P(Oénej)1X}) l_[ Pios (Ui 1% Hng ) (13)

el iene(j)

with terms capturing the influence o&ing(j) on j given by

Pisj(Uisjlxi; i) = Z pm”xi;/v‘i*) (14)
Ti\uis |
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for all ui_,j € Ui_,j where

Pt i) = | by b)pCiv ) (15)
The term G(U}, Xj; V;e(j)’#:ez(j)) in Eq.[@0)is the total expected cost and given by
Ci(T . Xii Vi ) = D, Cimi(Uiosis Xii Y i) (16)
iene(j)

for all TJ’J- € '?Ij with terms capturing the influence of j o ing(j) given by

Ciss j(Ujis Xj3 Vi's Hng)) :f

ane(i)\jdep(Xne(»\j,XilXj)
KXneli\j Xi

X Z 1_[ P iUy il s i (Ui, x5 v) - (17)
Une(i)\j |/€ne(i)\]

such that

(5 = [ o [ a% e x)pCRiy TP ) 18)

Yi X

Proof. As discussed at the beginning of this section, two-stageegfies over undirected graphs can equiv-
alently be represented by strategies over DAGs. Under Agsans1ER Corollary 3.4in [20] is valid over
the bipartite directed acyclic model associated with the-stage strategies over the undirected grgph
Consider the bipartite DA® = ((V,V’), ¥) associated with the undirected gragh Propositior =311 is
obtained after applyin@orollary 3.4in [20] on 8 and then refolding it back tg by substitutingj for all
jeV. O

Propositior 3] provides a variational characterizatibthe j" communication and estimation rules,
given a pbp optimal two-stage strat@y Let us use a simpler notation for the terms on the left hand
side (LHS) of Eq.${1I13) and{]L6) and denote therrP(ijlxj) ande(_dj, Xj), respectively. Considering
Eq.s[IB) and{I4R;(Ujlx;) is a likelihood function forx; inducingUj. Eq.s{I6){(IB) reveal tha; (U, x;)
is the total expected cost induced on the neighbors by trisitsgt ;, i.e., E{c® (Rne(j)» Xne(i))[U 1+ Xj: Vigeiy My
Since p(x;) p(y;Ixj)P(Ujlx;) o« p(xjlyj, U;) holds under Assumptiof8[2-3, th& optimal communication
rule selects the message that results with a minimum caitisib to the overall cost and the optimal

estimation rule selectg; that yields the minimum expected penalty giwgnand ﬁj. For example, if

The integrals oveX; andY; should be interpreted in accordance with the dimensignafitheir domains.
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c?(f(j, Xj) = (X - xj)2 as in the conventional mean squared error (MSE) estiméduen, the estimation rule
in Eq.[I1) can be expressed in closed form as

fXJ. dx; X; P0X;) PC;1%)) P (1)
fXJ. dx; p(x)) ply;Ix;)P(WTjlx;)

Sincer(ﬁjlxj) = p(ﬁj|xj;u;‘]e(j)) is the likelihood of the incoming messages and the conthticndepen-

%j = v} (¥, ) = (19)

dence relatiorUj 1L Y| Xj holds, then
P(x,yj, Tj) = p(xj) ply; X)) p(Tjlx)
and the denominator in EQL{19) is nothing pfy;, ﬁj) = p(yj, ﬁj;,u;e(j)). Consequently, the local es-
timation rule is the expected value of the posterior givemlttal measurement and incoming messages
given by
% =iy} Uj) = fX dxj X POXilyj. Uji ting)-

Based on Propositidn_3.1, it is possible to tjailort}?ﬂate step of Algorithml to obtain an iterative
scheme for finding a pbp optimal two-stage strategy. Thdnreat of the terms in Eq[S{ILOL{1Z)-{18) as
operators that can act on any set of local rules, not nedlysegtimal, results with AlgorithnrTR2. Note
that, these steps can be carried out in a message passimnfabhthe first passUpdate Step 1), all
nodes compute and send node-to-node likelihood terms torteeghbors. In the second pas#pate
Step 2), upon reception of these messages, all nhodes update ithedn{ing) message likelihoods and
estimation rules. Then, they compute and send expectednasstages to their neighbors. After receiving
cost messages from neighbors, each node updates its conanomirule Update Step 3). Owing to
the message passing structure, the complexity of optifoizas bounded by the node with the highest
degree rather than the number of nodes. Such a structursoisadVantageous in the case of a network
self-organization requirement.

Finally, the value of the Bayesian risk function at tRdteration is easily found in terms of the expres-
sions discussed above as

30 = D GION + 1) G, (20)
ey ieVv
where the per node costs are given by

G?’(V!)=Zf dx; pOs) P (T ) i (T, %35 ), 21)
T VN

G?(ﬂ!)=2f dx; P (T, X)) P(x) PCT 1% 44)- (22)
T, VN
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Algorithm 2 lIterations converging to a pbp optimal two-stage stratagy a UGG.

1: Choosey® = (2,79,....9%) e TY9 ande € R* >Initialize
21«0

3: repeat

4: l—1+1

5: fori=1,2...,Ndo > (Update Step 1)

Find the node-to-node likelihood messag@$_)j:Pi_>j(ui_>j|xi;y!‘1) for jengi) using

Eq.s[I%) and(14).
6: end for
7: for j=1,2,...,Ndo > (Update Step 2)

Find the incoming message Iikelihocﬁq' by substitutingP! s into Eq. [IB).

N
Find the estimation rule'j by substitutingP;' in Eq.s[I2) anél]]]l).
Find the cost messagé‘%_>i fori e ngj) by usingv'j andP!_)j in Eq.s(I8) and{17).

8: end for

9: for j=1,2,...,Ndo > (Update Step 3)
Find the communication rule'j by substitutingﬁ:i'_)j fromi € ng(j) into Eq.s(IB)[I0) and19).

10: end for

11: until I -JG) < e > Check

4. MC Optimization Framework for two-stage in-network proc essing strategies over UGs

In this Section, we develop Monte Carlo (MC) methods to meahlgorithm[2 introduced in Sectidn 3.
Algorithm[2 results with a pbp optimal processing stratedy®e structure is captured by the operators in
Propositior[3311. It is not possible to evaluate these opesdbr arbitrary selections of, e.g., priopéx;)s,
likelihoods p(yjlxj)s ory,j € F\gj, in general. Instead, we consider a fixed set of particleaet eaode and
approximate the aforementioned operators using MC metbiacts as Importance Sampling (15)/[35, 36].
The resulting algorithm which is detailed in this sectiomries out strategy optimization through passing
messages represented by weighted partitles

We use IS with independent samples generated from two pabplestributionss;j(x;) andq;(y;) over

USimilar decentralized algorithms based on transmissidnseighted particles include particle Belief Propagatidgoa

rithms (see, e.g..[37,38]) for estimation.
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XjandYj, respectively for nodg:

S; 2 (x, @

(Mj)
P }

o X] such thatxgm) ~sj(x) for m=1,2,..,Mj, (23)

and,

y(l), JZ),. ,yJ } such thaty“’) ~qj(y;) for p=1,2,..,P;. (24)

These proposal distributions can be selected as the locaimaés p(x;) and p(yj). This sampling
strategy has been previously used in similar message paskjorithms (see, for example, [38] and the
references therein). Use of heavy tailed distributions ld/@mprove the small sample size variance of
IS [36]. Although the sizes db; andQ; might vary, we assume thdd; = M andP; = P for j € V for the
simplicity of the discussion throughout.

We fix these particle sets in order to reduce the communitébiad of the optimization by not having
to transmit particles at every iteration but transmit therty @nce and communicate the weights for the rest
of the iterations. This approach is similar to that propasef@&] for particle BP algorithms, and, has also
been used in [20] for optimizing decentralized strategies ®AGS.

Using these sample sets, we make successive approximaiithesexpressions constituting tjté pbp
optimal local rule given in Propositidn_3.1. First, we appnoate to the local rule pair in Sectign¥.1. Then,
we apply the IS rule to the incoming message likelihood (B&h). In Sectiofii4l3, we tackle computations
regarding the expected cost term. Finally, in Sedfioh 4&lemploy all the previous steps simultaneously
in Algorithm [2 and obtain a Monte Carlo optimization schemehsthat the message passing structure is

preserved.

4.1. Approximating the person-by-person optimal locaérul

Let us consider Propositidi8.1 for the variational formtaf " communication and estimation rules
in the case of an arbitrary ; not necessarily optimal. We approximate Hg.s(9) (Xbesit is often not
possible to compute these integrals, exactly, for arlyitsatections of the factors that construgtandg;
(given in Eq.4(I0) and(12), respectively).

We simplify our notation by hiding the dependence of the afmes in Propositiof 3l 1 to the local rules
in ;. For example, we denote the incoming message likelihoodyifIB) and the total expected cost in

Eq.(16) bij(ﬁj|xj) ande(ﬁj, Xj), respectively, where the underlying rules are obvioumftbe context.

17



We use the sample s8f in Eq.{Z3) for finding an IS approximation to the communicatiule in Eq D)

and obtain
ﬂj(yj) ~ arg T(ll? W Z w(m) p(y,lx(m))[/lcc(_d,, (m)) + C; (ﬁj, gm))] (25)
J ]
W = pOdm)/50E™), (26)

i
for all y; € Y with non-zero probability.

For the local estimation rule given i{11), a similar appnation is given by

1
vi(y;. Uj) ~ arg min S o Z oy X™)P (T (%, X™), (27)
N Y- m=1

— . . : :
for all yj € ; and U € U with non-zero probability, using the IS weights in EqI(26).

Example 4.1. Consider the squared error penalty for the estimation erire, éf()“(,-, Xj) = (Xj - Xj)z. Then

the pbp optimal estimation rule local to node j as given inthdational form by EqZ4) yields

g&”mwwﬁmﬁW%
vi(y;, Uj) ~

M
2 Py MIPIN™)

4.2. Approximating the message likelihood function

We consider the message likelihood funct®y{r;|x;) in the right hand side of{27) given by EGI13)
together with the recursion involving Eq.s[14) ahdl (15). fidd an IS approximation for evaluations of
P;j(Ujlxj) atx;j € SjandUj € <(L_{j as follows: We first considep(U;|x; x) in (I8). We use the IS rule with

the sample se&®; generated from the local proposal densjify;):

PCEig™: ) £ P 1w(m)(P)Zw 8,6, (h) (28)
p_
U p(Y,p)|X,m))
! A

for U; € U; andxl(m)

Note that the node-to-node likelihod?_,j in (I4) is a marginalization op(i|x; ) and can be esti-
mated by substituting ih [I4). Let us denote this term I@_”-.

Second, we considé; (ﬁjlxj) in (I3) and construct a sample set at ngdby using the particle ses

local to the neighbors. The™ element in this set is a vector obtained by concatenatingnthelements
18



from Sis, i.e., we construcSngj) = Xne(]) x,(gn (XI ))|ene(,)} Note that these points are generated
from the product of proposals, |.e<ne(j) ~ [Tiengj) S(X). We consider using this sample set with the IS
method and equivalently the proposal dengifyngj) S(x). Then, the integral in the RHS of EQ.{13) can

be approximated with

M
. 1 .
Pimid™) & ————— 3" ™™ [T A jusiX™), (29)
3 MM =1 iend(j)
m=1 !
(n7) (M)
m) p(xne(J)|x )

] (MK"
Iegm s(§)

We replace th@; term in the RHS of EQ.{27) b?,- and obtain an approximately pbp optimal estimation

(1>

rule through these successive IS approximations.

4.3. Approximating the expected cost term

We consider the expected cost te@in the RHS of the communication rule approximation[inl (25).
This term is given by EqE{16)={118) and we begin with apprmting to the conditional estimation risk
li(T5, xi; vi). After substituting from[{6) intd{118), we obtain

(x50 = [ dyelnt . X))

For the RHS of the expression above, we g¢&) as the proposal distribution of the IS rule and utilize

the sample se; (Eq.(Z4)). Then, the conditional expected risk is estimdig

i'l(ﬁl, Xi(m); Vi) A Z w(m)(p)Cd(V (y(p) ﬁ) Xl(m)) (30)
Z w(m)(p) p=1
p=1
(P) |4 (m)
wi(m)(p) _ p(Y; |)|:; )
qi(yi )

forall U; € (<L_(i andxi(m) €S

Now, let us consider the approximate evaluation of the rodgede cost messag€}_,; given by
Eq. (IT). We employ IS for approximately evaluating the RHE&@. (I1) at all possibleu|_;, xgm)) pairs
such thatj_; € Uj-; and xgm) € Sj. Similar to the discussion on approximating the messagxitigod
term, we consider a sample set constructed by concaterthtng” elements from the usual sets local to

neighbors of other thanj, i.e.,

= D P = Ot
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This set can equivalently be treated as points generated [ffp.gi) j S/ (Xj). Together withS;, we

use the IS approximation to RHS of HqJ17) and obtain

o 1
Ci—>j(Uj—>i,X§m)) £ Z WZ M) l_[ PJ—)I(uj—)le )I (E,X, vi), (31)
Une(|)\] ZTT'I' 1 J End')\]
(n) (mf) (m)
(m@m) p(xne(l)\l |X )
@i - (m) NGO
p{™) 11 5,087
jrene(i)\]

After replacingCi_,j with (fi_>j in the total estimation risk in E.{L6) and the approximateal communi-

cation rule in EqI(Z5), a further approximation denotedpis dbtained.

4.4. MC optimization of two-stage in-network processimgtsgies over UGs

In Section§411=413, based on Proposifion 3.1, we providddrae Carlo framework for approximating
the j local rule in the pbp optimal form given an arbitrayy;. In particular, we obtained.(,7j) using the
IS rule with proposal distributions which might be selectedply as local marginals.

Once the RHSs of all the expressions in the MC framework amsidered as operators, we can approx-
imate all local rules in a strategy simultaneously and phegrt into Algorithn2. The procedure we obtain
with this approach is given in Algorithid 3. Note that, the sage passing structure of the computations is
maintained: Before proceeding with the iterations, theasoekchang&;s with their neighbors. In the first
stage of the iterations, the IS weights of the node-to-nid@déihoods are transmitted to the neighbors. It suf-
fices to transmit these sets as arrays of weights for eaclsaitie link symbol sinc&;s are already known
to neighbors. In the second stage of the iterations, themmestages are exchanged, again, as ordered real
arrays for each symbol. The node-to-node likelihood fromeido j is, then, of lengthv; |(L(i_,,-|, whereas
that of the cost message h; |(L{i_>j|. In the examples we present in Sectidn 5, convergence is\ahi
after only a few iterations.

Finally, the value of the Bayesian risk function correspngdo the strategy at th# iteration, i.e.,

JO) = Ja(') + 23.(y") given by Eq.$[20)E22), can be computed approximately by

35 = >, 66D + ) Gr) (32)
eV eV
where
&Il = Zﬁ!”(ﬁl&-(m’)l?(ﬁing(”’ﬁ!), (33)
Ti,m
Gi@) = ) co(di, X™)p(di™; j (34)
ﬁi,m
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Algorithm 3 Iterations converging to an approximate pbp optimal tvamstin-network processing strategy

over a UGG.
1: Choosey? = (y(l), yg, e ,y,%) eI'Y ande € R* > Initialize

21«0

3: repeat

4 l—1+1

5: fori=1,2...,Ndo > (Update Step 1)

Find the node-to-node likelihood messa@llgj = Pisj(Uisjx; A7) atuisj € Uiy, % € Sj for

j € ng(i) using Eq.4(28) and(14).
6: end for
7 for j=1,2,...,Ndo > (Update Step 2)

Find the incoming message Iikelihocﬁj| by substitutingf’!_)js into Eq. [2D).
Find the estimation rule'j"by substitutingsjI in Eq.(ZT).
Find the cost messaged} | atui,j € Ui-j, % € Sj for i € ne(j) by using/! andP|_; in
Eq.s[3D) and(31).
8: end for
o: fori=1,2...,Ndo > (Update Step 3)
Find the communication rule'j by substitutingﬁi'_)js into Eq.4(16) and(25)
10: end for

11: until (33, IG'"Y),...,I6%) < & > Check

In contrary to{J(')}, the sequence of approximated objectives, {&3')}, is not necessarily non-
increasing. Nevertheless, note that the error sequengg = J(y') — J(3') will be identically zero with
probability one asvl, P — 0. Investigation of an operatar(Check step of AlgorithnB) that would yield

a non-increasing error sequence with high probability foitdiM, P could be a topic for future work.

5. Examples

In this section, we demonstrate our MC-based decentradiggthation framework in various scenarios
including Gaussian priors, non-Gaussian priors, and lesgdom graphs. We use local marginals as IS
proposal distributions and compare the performances ofptienized strategies with those of the central-

ized and the myopic estimators. The centralized estimatwrigies the best accuracy achievable with the
21



a6

(b)

Figure 3:[{@ Undirected communication topologyconsidered in the example scenarfo] (b) Illustration of cberesponding

Markov Random Fiel@x subject to estimation by the decentralized estimation odtw

communication cost of collecting the network-wide measwsts at a designated center. In the myopic
estimation strategy, all variables are estimated localpgionly the local measurements and no communi-

cation resources are utilized.

5.1. A Simple Gaussian Example

We first consider a small network composed of four platforf&aussian random field = (X1, X, X3, X4)
is of concern and platforn is associated wittX;. We consider two-stage strategies over the undirected
graph given in Figur€[3(h). The BW constraints are captusespecifying the set of admissible symbols
Ui-j=10,1,2} forall (i, j) € &.

The online processing, as described in Sedfioh 2.1, stétisaach node evaluating its communication

function on its measurement, i.e., nodes 4 simultaneously evaluate

U3 = p1(y1), Uz = pa(y2), (Us—1,Us—2, Usa) = u3(Y3), Uasz = pa(Ya)

respectively. As soon as all the messages from the neiglaverseceived, estimation rules are run, i.e.,

nodes 1- 4 evaluate

X1 = vi(Y1, Us—1), X2 = va(Y2, Us—2), X3 = v3(Y3, U153, U3, Usss3), Xa = va(Ya, Uz—a)

respectively. We design the strategy: (y1, ..., ya) wherey; = (uj, vj) using Algorithm(B.

We select the communication cost local to nodas C(J;(Uj_me(j), Xj) = Ykenq(j) C(J;_)k(Uj_>k, Xj) which
satisfies Assumptio 1. Here‘ﬁ_}k(uj_,k) is the cost of transmitting the symboj_x on the link (,k) € &
and given by

. 0, if Uik =0
Cik(Ujmk X)) = ,
1, otherwise
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Hence, /.« together withc; , defines a selective communication scheme wherg = 0 indicates
no communications angj_x # O indicates transmission of a one bit message. We call thibiasklective
communication scheme and also discuss a 2-bit schemernatgsisection. The estimation error is penal-
ized byc?(xj, Xj) = (xj - >‘<j)2. Hence the total cost of a strategyJ§/) = Jy(y) + 1J.(y) where Jq is the
MSE andJ; is the total link use rate.

The random field prior is a multivariate Gaussian, ixex, N(x; 0, Cx) whereN denotes a multivariate
Gaussian with meafl and covariance&y. This distribution is Markov with respect to the gragh in

Figure[B(D). The covariance matrix is given by

2 1125 15 1125

1125 2 15 1125
Cx = . (35)
15 15 2 15

1125 1125 15 2

Note that AlgorithniB is valid for any arbitrary selectiontbé& undirected communication topology that
is not necessarily identical to the Markov random field repreeation ofX. Here, for the sake of simplicity
we select the UG topology in FiguE 3(a) to have the sametsteias the MRF in Figurld 3(b).

For the noise processesfor j € V, Assumption§l2 and 3 hold witp(y;|x;) = N(yj; Xj, 0.5). Consid-
eringCy, each sensor has an SNR of 6dB.

The initial local estimation rule is the myopic minimum MS#&ienator which is based only o, i.e.,

V?(yj, ﬁj) = f:o dx; xjp(x;ly;), and the initial communication rule is a threshold rulemfimng y; given by

1,yj <20y,
KO =10, - 20m <yj < 200 (36)
2,yj>20q.

Suppose that we use AlgoritHth 2 and achieve the performasioésgJ.(y*), Ja(y*)) for the converged
strategies as we vary. There exists a* value such that fon > A%, the communication costJ. will
increase to a level that prevents the decrease in the decisgiJy achieved by the transmitted information
among nodes to further cause a decrease in this regime, not sending any messages (selecting theaym
0) and using the myopic estimation rule will be the pbp optisti@ategy. Hence, it is possible to interpagt
as the maximum price per bit that the systeffiors to decrease the expected estimation error. As we use
Algorithm[3 and increasg from 0 we approximate samples from the corresponding pamticnal curve

which enables us to quantify the tradiebetween the cost of estimation errors and communication.
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In Figure[4(d), we present the approximate MSE-total lin ke pairs of the converged strategiés ~
obtained by using Algorithriil 3 for varying from 0 with Q001 steps (black+’s). These points demon-
strate graceful degradation of the estimation accurady @eétreasing communication load in the network.
Specifically, we generate 2000 and 30000 samples fsbg) and p(y;), respectively for obtainingy and
Sy,. The upper and lower bounds are MSEs corresponding to th@imyale and the centralized optimal
rule respectively. For the squared error cost, the optireatralized rule given b¥E{X|Y = y} yields a
communication cost of. = 3Q whereQ is the number of bits used to represent a real number,yj.e.,
before transmitting to the fusion center. Let us considgrJ;) pairs for the 1-bit selective communication
scheme, forl = O (the transmission has no cost). The link use rate is appeeily 32 bits, which is
far less than the total capacity of 6 bits for the bi-direéibtopology given in FigurE[3(g). Nevertheless,
the MSE achieved by using the strategy designed using AlgofB is significantly close to that for the
centralized rule. The communication stops across the mktigothe strategy designed using ~ 0.3 and
the nodes proceed with the myopic estimators for largeregaiA.

At this point, it is worth mentioning that the converged &tgges for diferent threshold selections in
the initial communication rule given by EQ.{36) yield thereaperformance with a slight variation due to
Monte Carlo approximations. This indicates that the prepgoscheme performs fairly consistently with
different initializations, in this example.

We repeat the same scenario with fietient BW constraint: Specifically, we sel€dt ;s correspond-
ing to a 2-bit selective communication scheme. The initimhmunication rules are appropriately modified
versions of that given by E@.(B6) and the approximate perémrce points obtained are presented in Fig-
ure[4(@) as wetll. The tradeff curves show that, as we increase the link capacities andrfall enough
A values, the pbp optimal strategies for the 2-bit case aelf@vimprovements in the estimation accuracy

for the same total communication load.

5.2. A Simple Heavy Tailed Example

In this example, we demonstrate that the MC framework apfitiearbitrary distributions provided that
samples can be generated from their marginals. This can lm@ortant advantage in certain problem

settings in which it is not possible to obtain closed formresgions even for the centralized rule. We

2For these experiments, we use the condifjd' %) - J(3)| - |J(3'"2) - IG'Y)|| < 1.0e - 2 in the Check step of Alg.[B.
The minimum number of iterations for convergence is 3 fohhtbie 1- and 2-bit schemes and the resulting averages (standa
deviations) are 24(043) and 311(031) for the 1- and 2-bit schemes, respectively.
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Figure 4: The approximate performance points convergezhfimg the tradef together with the lower bounds (blue dashed-lines)
and the upper bounds (red dashed-lines) of the problema fiy¢he estimation performance measured in MSE for the aptim
centralized and the myopic rules respectivdly] (a) Gaossi@ problem: The estimation network in Figufg_B(a) is subjec
optimization through Algorithnid3. The initial strategy @ebes (.(y°), Ja(v°)) (black ‘x’). The pareto-optimal performance
curves, achieved for the approximate pbp optimal strasegtgle A is increased from 0 with steps of0@1, are approximated by
{(J}(ixﬂ'), jd()”/ﬂ'))} wherey? is the approximated optimum strategy for Results for 1 and 2 bit selective communication schemes
are presented_(b) Heavy tailed (Laplacian) prior probleith @ UG: We demonstrate the variation of the approximativero
different sample sets for a heavy tailed prior through the pedace points achieved using Al§. 3 with various values afid 10

sample sets for each

consider such a scenario in whighis distributed by a heavy tailed priqa(x), specifically a multivariate-

symmetric Laplacian (MSL) given by

2 xTCix\ 92
p(x) = (2r)9121C |l/2( 2X ) Kl—d/Z(VZXTC;(lX) (37)
X

whered is the dimension ok, Cy is a covariance matrix, anid,(u) is the Bessel function of the second

kind of ordern (see, e.g.,.[39]). Let us denote this density ®iy(Cx). Unlike the Gaussian case, un-
correlatedness does not imply independence and not beirgrdbar of the exponential familgg Lg(Cx)
does not admit a Markov random field representation. On therdiand, it is possible to generate sam-
ples from an MSL utilizing samples generated from a muliater Gaussian of zero mean and the desired
covariance matrix together with samples drawn from the umiariate exponential distribution, i.e., given
X ~ N(X;0,Cx) andz ~ €%, generate samples &éfby x = yzX, thenx ~ S L4(Cy).

Similar to that in the previous section, we assume the upidgrcommunication structure described by
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G = (v, &) in Figurel§(d) together with a 1-bit selective communmascheme, and similar cost functions,
observation likelihoods, and initial local rules. To thesbknowledge of the authors, for an MSL prior and
Gaussian likelihoods, even the centralized paradigmtiajisovide a solution without employing numerical
approximations.

We considerX = (X1, X, X3, X4) such thatpx(x) = S L4(Cx) whereCy is given by Eql(3b) and we
exploit the fact that thg™ marginal density o8 Ly(Cx) is given byS Ly([Cx] i,j)- Itis straightforward to
generate samples from these marginals [40]. Sample setstfre observation distributions are obtained
using the scheme in_[20].

In this example, we also demonstrate the variation of theltsesver diferent sample sets, so, we gen-
erate 10 dferent sample sets such th&f| = 3000 andQ;| = 45000. Using these sets, we run Algoritdin 3
for different choices oft (as opposed to using a single sample set and small increrokitas in Sec-
tion[53). In Figurd (), approximate performance poioisthie converged strategies are presented. The
upper and lower bounds are the MSEs corresponding to theimgnog the centralized rules, respecti@ly
For each value oft, collective results based on the 10 sample sets provide pledrased approximation
to the performance pointd§(y*), J.(y*)) on the tradefd curv@. These sample-based results form clus-
ters with reasonable variability which can be interpretecm indication of their approximation quality. It
is reasonable to expect this level of variability since lyetailed distributions require utilization of larger
sample sets. Nevertheless, the proposed MC frameworkdaewistributed solutions in problem settings

which do not admit straightforward solutions even in thetadized case.

5.3. Examples with Large Graphs

In this section, we demonstrate Algorittiin 3 in relativelsgkascale random field estimation problems.
Specifically, we consider problems set up by randomly deptpp0 platforms over an area of 100 unit
squares. Each sensor locatisne R? is associated with a scalar random variable, We assume that

the random fieldX = (X1, Xy, ..., Xs0) is Gaussian with zero mean, i.&.~ N(x;0,Cy) andCy = [Cj j] is

13In the MSL prior-Gaussian likelihoods problem, the evatrabf the myopic and centralized strategies and the cooretipg

MSEs require numerical approximations for which we utild€ methods as well.
“Note that, (4(y*), Je(y*)) is the performance of the pbp optimal strategyfor the Bayesian risk corresponding A9 i.e.,

J(y) = Ja(y*) + Ad(y").
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selected as the Matérn covariance with nugdgetot given by{[41]

(c2/20-9r()) (2yih/ )" 2K, (2yih/¢) . h > 0
Ci= (38)

2 +02h=0
whereh £ ||s - sj| is the distance between sensbesid j, K, is a modified Bessel function of the second
kind of ordern, 72 is the nugget fect, ¢ is the d@fective covariance range and is referred to as the partial
siII. The covariance function for the particular set of paramedéues we use in our experiments can be
seen in Figur&€l5(b). The variancesXjt are given by the covariance function evaluated at0 which is
unity. The covariance matri€y for the deployment in Figulg5{a) is given in Figlife b(c). Tiesrse ofCy
contains no zeros and, hence, this model cannot be exaptlysented by a sparse Markov Random Field.

The undirected communication topology in Figlfeb(a) imfbby sparsifying the Gabriel graph of the
deployment. We consider a one-bit selective bi-direclimanmunication scheme which yields 128 bits
total capacity with this UG. We initialize the nodes witbhantizationrules for communications and myopic
estimators. We select a communication cost similar to trathave used in the previous examples and
squared error as the estimation cost. We|Bge= 2000 andQ;| = 30000 samples from local marginals in
Algorithm[3.

The measurement noise for each sensor is Gaussian Witlrwadﬁj = 0.25 leading to ®2dB signal-
to-noise ratio (SNR) given by SNR 10 Iogloa-J?/o-ﬁj. The myopic MSE is given by MSE 0'120'%./(0']2 +
o-ﬁj) which equals to @. In order to demonstrate théfieacy of the optimized two-stage strategies in
comparison with the myopic estimator and the centralizéidhesor, we define an MSE equivalent SNR as
SNR = 10 Ioglo(a-j2 - MSB/MSE This quantity, in a sense, is the SNR of a sensor which woidldl y
the given MSE value when it is used with a myopic estimatooni-this viewpoint, a two-stage estimation
strategy can be viewed as being equivalent to replacing sawabor with its SNR-improved version in a
myopic strategy.

We consider sensors 1723 in Figure[b(d). In FiguE§5({d) we present the benefits oftthestage
strategies designed using Algoritliin 3 in terms of the impnognt in the MSE equivalent SNRs foffdirent
values ofd. The upper bounds are achieved by the centralized estinhdoles 18- 23 have closely located
neighbors with highly correlated local variables. Ass decreased, communication is utilized more, and,
consequently an improvement as much as more than half of Ylopimicentralized SNR gap is achieved.

Node 17 is more distant to its neighbors and benefits lesstherimcoming information.

Byvarious forms of Matérn covariances are commonly used atiapdata modeling [8].

27



1

0.81
0.6
O
0.41
0.2t
O L L N L L L
0O 10 20 30 40 50 60 7O
h (m)
(b)
O
......................................... T
1
Qv T
.................................. Lo
1 1 1
g 8 R T s it
S LT | TR LI oo LI
— -1 1 -1 1 1 1
& b TP TNt U IO
—_— 1 1 = 1 1 1
Lo Lo Lo Lo Lo Lo Lo (.
1 1 - 1 o 1 1
Gh R T T T ey T R T
sensor#17 18 19 20 21 22 23

| — 1 =0.158 — 1 =0.0158 A =0.00158

() (d)

Figure 5: Set up for experiment involving 50 randomly deplynodes{(d) Randomly distributed sensor nodes and the UG
communication topology obtained by sparsifying the Galieph of the deploymen{_{b) Matérn covariance functienlB3)
used in the experimentsi= o® = 0.5,y = 4,¢ = 15). [[c] C« obtained for the deployment [MJa) with the covariance fiamct
in[(B). [[d] The myopic and centralized-equivalent SNRs ofsses 17- 23, and improvements achieved by optimizing the two-
stage strategy with Algorithid 3 for ierent values oA.

The overall estimation and communication costs of this netvare given in Figur€]6(p) for flerent
values ofd and five diferent sample sets for each. Note that, the cost of commionicitr the improve-
ment upon the myopic MSE is on the scale of tens of bits whidkxtsemely small as compared to the

cost of collecting network wide measurements at a designadele for centralized estimation. The per-
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formance points for dierent sample sets form clusters around the points from thetgaptimal curve
they approximate in a way similar to the example in Sedii¢hahd the results given in Figutg 4(b). The
variations of the clusters indicate a fairly good qualityapproximation. We verify the consistency of our
algorithm in the performance of the designs by using fourntamehl deployments. For each deployment,
the diagonal oz, and, hence, the myopic performances are the same withfttreg other three networks.
The MSEs of the centralized rules, on the other hanieidas well as the total network capacEsWe
present the approximate MSE-total link use rate pointsifer 0.005 and (05 and for 5 diferent sample
sets in Figur . It can be observed that, the converged strategy improweM®E performance in
comparison with the myopic rule for all of the UGs with a fameunt of variability in the results. This
suggests that our algorithm performs consistently acressiaty of random network structures. The gains
in the estimation accuracy in this example are fairly sigaifit considering that only 1-bit transmissions
are used. Our experiments also show thaffectively controls the tradefbbetween estimation accuracy

measured with MSE and the communications load in bits irelaple problems as well.

6. Conclusion

In this work, we have been concerned with the design of degigreéd random field estimation strate-
gies for sensor network applications. We constrain theilieaset ofonline strategies by the availability
and BW of the links and use a design objective which allowsusade the (possibly energy) price for com-
munication d@f with the estimation accuracy. Person-by-person (pbp)yr@itsolutions to such problems
can be found usingffline iterative message passing algorithms which fit well into @mtext. In estima-
tion problems, however, the optimization procedure as asthe pbp optimal local rules involve integral
operators which cannot be evaluated exactly, in general.h&e introduced a Monte Carlo framework
which circumvents this problem and leads to a feasible deslezed optimization scheme while preserving
the message passing structure. The proposed algorithordeagtcalability with the number of platforms as
well as the number of variables involved. We have demorestritese features through several examples
including a Gaussian problem, a non-Gaussian prior probég random large graph scenarios. We have
presented tradefiocurves relating the MSE of estimation and the network widemmainication load in bits.

One possible extension of this work is to investigate suctegies in settings involving broadcast com-

munications with the nearest neighbors, unreliable cHanfsency, sparse measurements and estimation

16The capacities corresponding to the deployment instanGeg-4 are 132130, 134, and 140 bits, respectively.
The number of iterations for convergence has a minimum vafl3e a mean value 4, and a standard deviation.bf 1
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Figure 6: AlgorithnIB for five random UGs and for five samplesdet each deploymefit:fa) Performance points obtainechfor t
UG in Figurd (@) ) Performance points obtained for faldiional random UGs. The parameteis selected ag = 0.005, 0.05
considering a 1-bit selective communication scheme andrsguerror estimation error penalty for all of the nodes.eNbat the
myopic MSE (showed by a solid red-line) is the same for allolapents whereas the centralized MSE (the lower boundgsari

for each deployment.

of a random field over a grid. Another line of investigationukbbe to consider settings in which the
random field prior evolves as a Markov processtt@ent in-network processing strategies can also be de-
veloped such as the hybrid in-network processing stregdgee|[42] for such a perspective on the detection
problem) employing both the class of strategies consideretis paper and strategies over DAGs| [20].
It might also be worthwhile to consider the problem of seterthe communication graph structure that

yields the best pbp optimal strategy givenaapriori distribution.
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