Ultra high heat flux cooling provided by flow boiling in microscale with enhancements using nanostructured surfaces

Warning The system is temporarily closed to updates for reporting purpose.

Kaya, Alihan (2012) Ultra high heat flux cooling provided by flow boiling in microscale with enhancements using nanostructured surfaces. [Thesis]

[thumbnail of AlihanKaya_435876.pdf] PDF

Download (2MB)


Due to their heat transfer efficiency and compact implementation methods, the use of flow boiling via plain and modified microchannels for cooling solutions gained a significant importance in the last decade. The increasing need for more efficient cooling solutions in various fields of micro scale cooling such as aerospace, microreactors, automotive industry, micropropulsion, fuel cells, drug delivery systems, biological and chemical applications is motivating researchers to investigate the physics behind the micro scale flow boiling phenomena. The proposed study aims to make a contribution to the literature in the related field by filling the gap of scientific knowledge about the microchannel flow boiling heat transfer capabilities at ultra high mass fluxes, under unstable boiling conditions and with microchannels having inner wall surface enhancements via nanostructure coating. The present thesis study and results of related experiments are divided into three main parts: ultra high mass flux flow boiling experiments, the effect of inlet restrictions and tube size on premature critical heat flux in microchannels and flow boiling heat transfer enhancement via coating polyhydroxyethylmethacrylate (pHEMA) on inner microtube walls. In the first part, microchannels having ~250 μm and ~500 μm hydraulic diameters were tested at various ultra high mass fluxes values and different heated length for forcing the conventional heat removal limits of flow boiling via microchannels. De-ionized water was used as working fluid and test section was heated with Joule heating. Wall temperatures for each case were recorded and exit qualities were calculated. The resulting CHF boiling curve demonstrates cooling rates (>30000W/cm2) that were never achieved by flow boiling in microchannels could be obtained. In the second part of the present study, useful information about premature CHF phenomena was provided. The study offers a parametric comparative investigation. Experimental data are obtained from microtubes having 250~μm and 685~ μm inner diameters, which were tested at low mass fluxes (78.9-276.3 kg/m2s) to reveal potential boiling instability mechanisms. Moreover, inlet restrictions were introduced to the system for observing their effect in mitigating unstable boiling conditions and extending the boiling curve. De-ionized water was used as a coolant, while microtubes having 5,65 cm heated length were heated by Joule heating. Furthermore, Fast Fourier Transform (FFT) of the deduced data is performed for revealing the frequency correlations of the every obtained temperature and pressure oscillations before and just before the premature dryout condition. The results show the inlet restrictions have a significant effect on reducing the unstable boiling fluctuations and the proposed FFT method was proved to be a useful tool to detect premature dryout before it occurs. In the third part, flow boiling heat transfer experiments were conducted on microtubes (inner diameter of ~ 250 μm, ~500 μm and ~1 mm) with a constant heated length 2 cm and with enhanced inner surfaces having deposited polyhydroxyethylmethacrylate (pHEMA), which extends the boiling curve, increases the heat transfer surface area, and provides additional nucleation sites. De-ionized water was utilized as the working fluid and test section was heated by Joule heating in this study. Nanostructures on the microtube walls were coated through initiated chemical vapor deposition (iCVD) technique. A significant extension in CHF boiling curve and increase in heat transfer were observed with nanostructure-enhanced surfaces compared to the plain surface counterparts for two relatively high mass velocities, namely, 10000 kg/m2s and 13000 kg/m2s.
Item Type: Thesis
Uncontrolled Keywords: Ultra high mass flux flow boiling in microchannels. -- Subcooled flow boiling. -- Boiling instabilities in microchannels. -- Flow boiling CHF enhancement via surface modifications. -- Nanostructure coating on microtube walls. -- Heat transfer. -- Heat exchangers. --- Fluid dynamics. -- Cooling channels. -- Evaporative cooling. -- Subcooled booling. -- Saturated boiling. -- Nucleate flow boiling. -- Nucleate boiling. -- Nano structure. -- Critical heat flux. -- Mikrokanallarda çok yüksek kütle akışında akış kaynamaları. -- Aşırı soğutulmus akış kaynamaları. -- Mikrokanallardaki kaynama kararsızlıkları. -- Yüzey modifikasyonlarıyla akış kaynaması. -- Kritik ısı akışı geliştirilmesi. -- Mikro tüp duvarlarına nano-yapı kaplanması. -- Isı geçişi. -- Isı değiştiriciler. -- Akışkanlar dinamiği. -- Soğutma kanalları. -- Buharlaştırarak soğutma. -- Aşırı soğutulmuş kaynama. -- Doymuş kaynama. -- Kabarcıklı kaynamalı akım. -- Çekirdekli kaynama. -- Nano yapı. -- Kritik ısı akışı.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ163.12 Mechatronics
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Mechatronics
Faculty of Engineering and Natural Sciences
Depositing User: IC-Cataloging
Date Deposited: 13 Oct 2014 16:44
Last Modified: 26 Apr 2022 10:02
URI: https://research.sabanciuniv.edu/id/eprint/24714

Actions (login required)

View Item
View Item