Modeling die swell of second-order fluids using smoothed particle hydrodynamics

Sadek, Samir Hassan Mahmoud and Yıldız, Mehmet (2013) Modeling die swell of second-order fluids using smoothed particle hydrodynamics. Journal of Fluids Engineering, 135 (5). ISSN 0098-2202 (Print) 1528-901X (Online)

This is the latest version of this item.

[thumbnail of This is a RoMEO white journal] PDF (This is a RoMEO white journal)
ASME_SPH.pdf
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

This work presents the development of a weakly compressible smoothed particle hydrodynamics (WCSPH) model for simulating two-dimensional transient viscoelastic free surface flow which has extensive applications in polymer processing industries. As an illustration for the capability of the model, the extrudate or die swell behaviors of second-order and Olyroyd-B polymeric fluids are studied. A systematic study has been carried out to compare constitutive models for second-order fluids available in literature in terms of their ability to capture the physics behind the swelling phenomenon. The effects of various process and rheological parameters on the die swell such as the extrusion velocity, normal stress coefficients, and Reynolds and Deborah numbers have also been investigated. The models developed here can predict both swelling and contraction of the extrudate successfully. The die swell of a second-order fluid was solved for a wide range of Deborah numbers and for two different Reynolds numbers. The numerical approach was validated through the solution of fully developed Newtonian and non-Newtonian viscoelastic flows in a two-dimensional channel as well as modeling the die swell of a Newtonian fluid. The results of these three benchmark problems were compared with analytic solutions and numerical results in literature when pertinent, and good agreements were obtained.
Item Type: Article
Additional Information: Article Number: 051103
Uncontrolled Keywords: smoothed particle hydrodynamics (SPH); weakly compressible SPH; free surface flow; die swell; extrudate swell; non-Newtonian fluids; second-order fluid; Oldroyd-B fluid
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Mechatronics
Faculty of Engineering and Natural Sciences > Academic programs > Materials Science & Eng.
Faculty of Engineering and Natural Sciences
Depositing User: Mehmet Yıldız
Date Deposited: 13 Jan 2014 10:16
Last Modified: 28 Apr 2020 14:07
URI: https://research.sabanciuniv.edu/id/eprint/23530

Available Versions of this Item

Actions (login required)

View Item
View Item