Equiconvergence of spectral decompositions of Hill–Schrödinger operators

Warning The system is temporarily closed to updates for reporting purpose.

Djakov, Plamen Borissov and Mityagin, Boris (2013) Equiconvergence of spectral decompositions of Hill–Schrödinger operators. Journal of Differential Equations, 255 (10). pp. 3233-3283. ISSN 0022-0396

Full text not available from this repository. (Request a copy)

Abstract

We study in various functional spaces the equiconvergence of spectral decompositions of the Hill operator L = d(2)/dx(2) + v(x), x is an element of [0, pi], with H-per(-1)-potential and the free operator L-0 = -d(2)/dx(2), subject to periodic, antiperiodic or Dirichlet boundary conditions. In particular, we prove that parallel to S-N - S-N(0) : L-a -> L-b parallel to -> 0 if 1 < a <= b < infinity, 1/a - 1/b < 1/2, where S-N and S-N(0) are the N-th partial sums of the spectral decompositions of L and L-0. Moreover, if v is an element of H-alpha with 1/2 < alpha < 1 and 1/a = 3/2 - alpha, then we obtain uniform equiconvergence: parallel to S-N - S-N(0) : L-a -> L-infinity parallel to -> 0 as N -> infinity.
Item Type: Article
Uncontrolled Keywords: Hill-Schrodinger operators; Singular potentials; Spectral decompositions; Equiconvergence
Subjects: Q Science > QA Mathematics > QA299.6-433 Analysis
Divisions: Faculty of Engineering and Natural Sciences > Basic Sciences > Mathematics
Faculty of Engineering and Natural Sciences
Depositing User: Plamen Borissov Djakov
Date Deposited: 06 Jan 2014 15:26
Last Modified: 01 Aug 2019 12:04
URI: https://research.sabanciuniv.edu/id/eprint/22342

Actions (login required)

View Item
View Item