Göğüş, Nihat Gökhan and Perkins, Tony L. and Poletsky, Evgeny A. (2013) Non-compact versions of Edwards' theorem. Positivity, 17 (3). pp. 459-473. ISSN 1385-1292 (Print) 1572-9281 (Online)
This is the latest version of this item.
art%3A10.1007%2Fs11117-012-0181-9.pdf
Restricted to Registered users only
Download (244kB) | Request a copy
      Official URL: http://dx.doi.org/10.1007/s11117-012-0181-9
    
  
  
    Abstract
Edwards' Theorem establishes duality between a convex cone in the space of continuous functions on a compact space X and the set of representing or Jensen measures for this cone. It is a direct consequence of the description of positive superlinear functionals on C(X). In this paper we obtain the description of such functionals when X is a locally compact sigma-compact Hausdorff space. As a consequence we prove non-compact versions of Edwards' Theorem.
  
  | Item Type: | Article | 
|---|---|
| Uncontrolled Keywords: | Superlinear functionals; Envelopes; Representing measures; Jensen measures | 
| Subjects: | Q Science > QA Mathematics > QA299.6-433 Analysis | 
| Divisions: | Faculty of Engineering and Natural Sciences > Basic Sciences > Mathematics Faculty of Engineering and Natural Sciences  | 
        
| Depositing User: | Nihat Gökhan Göğüş | 
| Date Deposited: | 10 Oct 2013 11:51 | 
| Last Modified: | 26 Apr 2022 09:05 | 
| URI: | https://research.sabanciuniv.edu/id/eprint/21766 | 
Available Versions of this Item
- 
Non-compact versions of Edwards' theorem. (deposited 20 Oct 2012 17:03)
- Non-compact versions of Edwards' theorem. (deposited 10 Oct 2013 11:51) [Currently Displayed]
 
 
    

