Grais, Emad Mounir and Erdoğan, Hakan (2012) Hidden Markov models as priors for regularized nonnegative matrix factorization in single-channel source separation. In: 13th Annual Conference of the International Speech Communication Association (InterSpeech 2012), Portland, Oregon, USA
PDF
InterSpeech2012_HMM.pdf
Download (317kB)
InterSpeech2012_HMM.pdf
Download (317kB)
Abstract
We propose a new method to incorporate rich statistical priors, modeling temporal gain sequences in the solutions of nonnegative matrix factorization (NMF). The proposed method can be used for single-channel source separation (SCSS) applications. In NMF based SCSS, NMF is used to decompose the spectra of the observed mixed signal as a weighted linear combination of a set of trained basis vectors. In this work, the NMF decomposition weights are enforced to consider statistical and temporal prior information on the weight combination patterns that the trained basis vectors can jointly receive for each source in the observed mixed signal. The Hidden Markov Model (HMM) is used as a log-normalized gains (weights) prior model for the NMF solution. The normalization makes the prior models energy independent. HMM is used as a rich model that characterizes the statistics of sequential data. The NMF solutions for the weights are encouraged to increase the log-likelihood with the trained gain prior HMMs while reducing the NMF reconstruction error at the same time.
Item Type: | Papers in Conference Proceedings |
---|---|
Uncontrolled Keywords: | Nonnegative matrix factorization, single-channel source separation, and Hidden Markov Models |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Faculty of Engineering and Natural Sciences > Academic programs > Electronics Faculty of Engineering and Natural Sciences |
Depositing User: | Emad Mounir Grais Girgis |
Date Deposited: | 21 Oct 2012 23:21 |
Last Modified: | 26 Apr 2022 09:06 |
URI: | https://research.sabanciuniv.edu/id/eprint/19662 |