Delgado Saa, Jaime Fernando and Çetin, Müjdat (2012) A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data. Journal of Neural Engineering, 9 (2). ISSN 1741-2560
This is the latest version of this item.
PDF (This is a RoMEO green journal -- author can archive post-print (ie final draft post-refereeing))
delgado_JNE12.pdf
Download (649kB)
delgado_JNE12.pdf
Download (649kB)
Official URL: http://dx.doi.org/10.1088/1741-2560/9/2/026020
Abstract
We consider the problem of classification of imaginary motor tasks from
electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be used to model different brain states in the signal; and (3) involve learned statistical models matched to the classification task, avoiding some of the limitations of generative models. Our approach involves spatial filtering of the EEG signals and estimation of power spectra based on auto-regressive modeling of temporal segments of the EEG signals. Given this time-frequency representation, we select certain frequency bands that are known to be associated with execution of motor tasks. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV as well as a number of more recent methods and observe that our proposed method yields better classification accuracy.
Item Type: | Article |
---|---|
Additional Information: | Article Number: 026020 |
Uncontrolled Keywords: | brain-computer interfaces, motor imagery, electroencephalography, time series analysis, conditional random fields, discriminative models |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Faculty of Engineering and Natural Sciences > Academic programs > Electronics Faculty of Engineering and Natural Sciences |
Depositing User: | Müjdat Çetin |
Date Deposited: | 02 May 2012 15:31 |
Last Modified: | 31 Jul 2019 10:52 |
URI: | https://research.sabanciuniv.edu/id/eprint/19007 |
Available Versions of this Item
-
A latent discriminative model-based approach for classification of imaginary motor task from EEG data. (deposited 22 Dec 2011 15:28)
- A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data. (deposited 02 May 2012 15:31) [Currently Displayed]