PA-CTM: privacy aware collaborative traffic monitoring system using autonomous location update mechanism

Amro, Belal Mohammed and Saygın, Yücel and Levi, Albert (2011) PA-CTM: privacy aware collaborative traffic monitoring system using autonomous location update mechanism. In: 4th ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS (SPRINGL '11), Chicago, IL, USA

[thumbnail of SPRINGL2011-paper-p1-amro.pdf] PDF
SPRINGL2011-paper-p1-amro.pdf
Restricted to Registered users only

Download (224kB) | Request a copy

Abstract

Collaborative Traffic Monitoring (CTM) systems exploit the location information continuously collected from vehicles. Users collaborate by providing their location information to have a global picture of the current traffic in real-time. However, location information is very sensitive information that made privacy a major obstacle for the widespread usage of CTM systems. Some of these systems depend on periodic location updates, where a vehicle updates location periodically [1]; other systems trigger update at particular regions [2], or with random time periods [3]. For privacy issues, these systems rely on a trusted third party for enforcing a predetermined privacy level. They may also generate low quality data because of the low precision in both time and space [4]. In this paper, we present a privacy aware collaborative traffic monitoring system, PA-CTM, where moving objects send their location updates to a traffic server, the latter then processes current data and provides its users with current traffic status. Users authenticate themselves to traffic server using pseudonyms that are changed according to user's privacy preferences. PA-CTM deploys two mechanisms for enhancing privacy, the first mechanism is the use of pseudonyms (to authenticate to the traffic server) to hide real identities, and changing these pseudonyms to hide trajectory information from the traffic server. Users can control their privacy by frequently changing their pseudonyms and hence become anonymous to traffic server. The second privacy enhancement technique in PA-CTM is the use of a novel autonomous location update mechanism, ALUM. In ALUM, location update is performed according to moving objects' behavior (change in speed or direction) without the need to a trusted third party. Unlike state-of-the art techniques, ALUM does not require a trusted third-party for triggering vehicles to update their locations. We utilized the existence of location prediction errors to calculate the region where a particular vehicle is expected to be in and hence to calculate anonymity level at that region. We compared ALUM against periodic and random silent period update mechanisms and it showed better privacy results in terms of k-anonymity metric.
Item Type: Papers in Conference Proceedings
Uncontrolled Keywords: Collaborative Traffic Monitoring Systems, Location based Services, Privacy, Traffic Monitoring, Precision Error, Anonymity
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Computer Science & Eng.
Faculty of Engineering and Natural Sciences
Depositing User: Albert Levi
Date Deposited: 26 Dec 2011 19:46
Last Modified: 26 Apr 2022 09:05
URI: https://research.sabanciuniv.edu/id/eprint/18436

Actions (login required)

View Item
View Item