Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules

Altıntaş, Zeynep and Uludağ, Yıldız and Gürbüz, Yaşar and Tothill, Ibtisam (2012) Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules. Analytica Chimica Acta, 712 . pp. 138-144. ISSN 0003-2670 (Print) 1873-4324 (Online)

[thumbnail of Development_of_surface_chemistry_for_surface_plasmon_resonance_based_sensors.pdf] PDF
Development_of_surface_chemistry_for_surface_plasmon_resonance_based_sensors.pdf
Restricted to Registered users only

Download (762kB) | Request a copy

Abstract

The immobilisation of biological recognition elements onto a sensor chip surface is a crucial step for the construction of biosensors. While some of the optical biosensors utilise silicon dioxide as the sensor surface, most of the biosensor surfaces are coated with metals for transduction of the signal. Biological recognition elements such as proteins can be adsorbed spontaneously on metal or silicon dioxide substrates but this may denature the molecule and can result in either activity reduction or loss. Self assembled monolayers (SAMs) provide an effective method to protect the biological recognition elements from the sensor surface, thereby providing ligand immobilisation that enables the repeated binding and regeneration cycles to be performed without losing the immobilised ligand, as well as additionally helping to minimise non-specific adsorption. Therefore, in this study different surface chemistries were constructed on SPR sensor chips to investigate protein and DNA immobilisation on Au surfaces. A cysteamine surface and 1%, 10% and 100% mercaptoundecanoic acid (MUDA) coatings with or without dendrimer modification were utilised to construct the various sensor surfaces used in this investigation. A higher response was obtained for NeutrAvidin immobilisation on dendrimer modified surfaces compared to MUDA and cysteamine layers, however, protein or DNA capture responses on the immobilised NeutrAvidin did not show a similar higher response when dendrimer modified surfaces were used.
Item Type: Article
Uncontrolled Keywords: Biosensor; Surface chemistry; Surface plasmon resonance; Dendrimer; Mercaptoundecanoic acid
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Electronics
Faculty of Engineering and Natural Sciences
Depositing User: Yaşar Gürbüz
Date Deposited: 05 Jan 2012 14:58
Last Modified: 26 Apr 2022 08:52
URI: https://research.sabanciuniv.edu/id/eprint/18088

Actions (login required)

View Item
View Item