Kim, Junmo and Fisher, III, John W. and Yezzi, Anthony and Çetin, Müjdat and Willsky, Alan S. (2005) A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Transactions on Image Processing, 14 (10). pp. 1486-1502. ISSN 1057-7149 (Print) 1941-0042 (Online)
Full text not available from this repository. (Request a copy)
Official URL: http://dx.doi.org/10.1109/TIP.2005.854442
Abstract
In this paper, we present a new information-theoretic approach to image segmentation. We cast the segmentation problem as the maximization of the mutual information between the region labels and the image pixel intensities, subject to a constraint on the total length of the region boundaries. We assume that the probability densities associated with the image pixel intensities within each region are completely unknown a priori, and we formulate the problem based on nonparametric density estimates. Due to the nonparametric structure, our method does not require the image regions to have a particular type of probability distribution and does not require the extraction and use of a particular statistic. We solve the information-theoretic optimization problem by deriving the associated gradient flows and applying curve evolution techniques. We use level-set methods to implement the resulting evolution. The experimental results based on both synthetic and real images demonstrate that the proposed technique can solve a variety of challenging image segmentation problems. Furthermore, our method, which does not require any training, performs as good as methods based on training.
Item Type: | Article |
---|---|
Additional Information: | WoS - Open Access (Green Published) |
Uncontrolled Keywords: | curve evolution; image segmentation; information theory; level-set methods; nonparametric density estimation |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Faculty of Engineering and Natural Sciences |
Depositing User: | Müjdat Çetin |
Date Deposited: | 20 Dec 2006 02:00 |
Last Modified: | 20 Jul 2020 17:22 |
URI: | https://research.sabanciuniv.edu/id/eprint/141 |