Bootstrapping morphological analyzers by combining human elicitation and machine learning

Oflazer, Kemal and Nirenburg, Sergei and McShane, Marjorie (2001) Bootstrapping morphological analyzers by combining human elicitation and machine learning. Computational Linguistics, 27 (1). pp. 59-85. ISSN 0891-2017

Full text not available from this repository. (Request a copy)

Abstract

This paper presents a semiautomatic technique for developing broad-coverage finite-state morphological analyzers for use in natural language processing applications. It consists of three components-elicitation of linguistic information from humans, a machine learning bootstrapping scheme, and a testing environment. The three components are applied iteratively until a threshold of output quality is attained. The initial application of this technique is for the morphology of low-density languages in the context of the Expedition project at NMSU Computing Research Laboratory. This elicit-build-test technique compiles lexical and inflectional information elicited from a human into a finite-state transducer lexicon and combines this with a sequence of morphographemic rewrite rules that is induced using transformation-based learning from the elicited examples. The resulting morphological analyzer is then tested against a test set, and any corrections are fed back into the learning procedure, which then builds an improved analyzer.
Item Type: Article
Subjects: Q Science > QA Mathematics > QA075 Electronic computers. Computer science
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Computer Science & Eng.
Faculty of Engineering and Natural Sciences
Depositing User: Kemal Oflazer
Date Deposited: 07 Jun 2010 22:48
Last Modified: 25 Jul 2019 10:00
URI: https://research.sabanciuniv.edu/id/eprint/14018

Actions (login required)

View Item
View Item