Bezerra, J. and Garcia, Arnaldo and Stichtenoth, Henning (2005) An explicit tower of function fields over cubic finite fields and Zink`s lower bound. Journal fur die Reine und Angewandte Mathematik, 589 . pp. 159-199. ISSN 0075-4102 (Print) 1435-5345 (Online)
This is the latest version of this item.
Official URL: http://dx.doi.org/10.1515/crll.2005.2005.589.159
Abstract
For a function field F/F-l over a finite field of cardinality l, denote by g(F) (resp. N(F)) the genus ( resp. the number of rational places) of F/Fl. In this paper we present an explicit tower of function fields F-1 subset of F-2 subset of F-3 subset of (. . .) over F-l for l = q(3), such that lim(r ->infinity) N(F-r)/g(F-r) >= 2(q(2) - 1)/(q + 2).
Item Type: | Article |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Engineering and Natural Sciences > Basic Sciences > Mathematics Faculty of Engineering and Natural Sciences |
Depositing User: | Henning Stichtenoth |
Date Deposited: | 01 Jun 2010 10:56 |
Last Modified: | 25 May 2011 14:06 |
URI: | https://research.sabanciuniv.edu/id/eprint/13989 |
Available Versions of this Item
-
An explicit tower of function fields over cubic finite fields and Zink`s lower bound. (deposited 28 Dec 2005 02:00)
- An explicit tower of function fields over cubic finite fields and Zink`s lower bound. (deposited 01 Jun 2010 10:56) [Currently Displayed]