Interfaces within graphene nanoribbons

Wurm, J. and Wimmer, M. and Adagideli, İnanç and Richter, K. and Baranger, H. (2009) Interfaces within graphene nanoribbons. (Accepted/In Press)

There is a more recent version of this item available.
[thumbnail of Interface_graphene_2009.pdf] PDF

Download (796kB)


We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to details such as whether regions of a semiconducting armchair nanoribbon are included in the curved structure -- such regions strongly suppress the conductance. Surprisingly, this suppression is not due to the band gap of the semiconducting nanoribbon, but is linked to the valley degree of freedom. Though we study these effects in the simplest contexts, they can be expected to occur for more complicated structures, and we show results for rings as well. We conclude that experience from electron gas waveguides does not carry over to graphene nanostructures. The interior interfaces causing extra scattering result from the extra effective degrees of freedom of the graphene structure, namely the valley and sublattice pseudospins.
Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QC Physics > QC176-176.9 Solids. Solid state physics
Q Science > QC Physics
Divisions: Faculty of Engineering and Natural Sciences > Basic Sciences > Physics
Faculty of Engineering and Natural Sciences
Depositing User: İnanç Adagideli
Date Deposited: 18 Sep 2009 10:31
Last Modified: 22 Jul 2019 16:11

Available Versions of this Item

Actions (login required)

View Item
View Item