Mechanical behavior and failure of glass/carbon fiber hybrid composites: multiscale computational predictions validated by experiments

Massarwa, Eyass and Emami Tabrizi, Isa and Yıldız, Mehmet (2021) Mechanical behavior and failure of glass/carbon fiber hybrid composites: multiscale computational predictions validated by experiments. Composite Structures, 260 . ISSN 0263-8223 (Print) 1879-1085 (Online)

[thumbnail of 1-s2.0-S0263822320334280-main.pdf] PDF
1-s2.0-S0263822320334280-main.pdf
Restricted to Registered users only

Download (4MB) | Request a copy

Abstract

A comprehensive, novel and computationally low cost multiscale model based on finite element analysis is proposed which includes repeating unit cell micromechanics, material nonlinearity, and progressive damage analysis to predict the mechanical behavior and failure of glass/carbon fiber hybrid composites subjected to various loading conditions. The computational micromechanics is used to predict the homogenized proper-ties of the composite from the mechanical properties of its constituents (fiber, and matrix), together with the volume fraction and spatial distribution of the fibers within it. Hashin’s failure criteria at the meso‐scale is implemented to determine failure of lamina while nonlinearity of epoxy matrix is introduced to model through J2 deformation theory of plasticity. It is shown that the introduced multiscale model can be used for 3D macroscale structural analysis through a user defined material (UMAT) subroutine developed at the finite‐element software ABAQUS/Implicit. The results of 3‐point bending and tensile tests accompanied by acoustic emission, and in‐plane shear tests with digital image correlation analysis, are used to validate the proposed multiscale model. It is shown that damage progress and strain distribution under various loading conditions can be predicted successfully, thus a reasonable correlation between the model and collected experimental data is achieved.
Item Type: Article
Uncontrolled Keywords: Glass/carbon fiber hybrid composites; Finite-element analysis; Micromechanics; Progressive damage mechanics; User defined material (UMAT) subroutine; Digital Image Correlation (DIC)
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Integrated Manufacturing Technologies Research and Application Center
Faculty of Engineering and Natural Sciences > Academic programs > Materials Science & Eng.
Faculty of Engineering and Natural Sciences > Academic programs > Manufacturing Systems Eng.
Faculty of Engineering and Natural Sciences
Depositing User: Isa Emami Tabrizi
Date Deposited: 22 Apr 2021 17:54
Last Modified: 19 Aug 2022 11:00
URI: https://research.sabanciuniv.edu/id/eprint/41450

Actions (login required)

View Item
View Item