Hydrodynamic and thermal performance of microchannels with different in-line arrangements of cylindrical micropin fins

Mohammadi, Ali and Koşar, Ali (2016) Hydrodynamic and thermal performance of microchannels with different in-line arrangements of cylindrical micropin fins. Journal of Heat Transfer, 138 (12). ISSN 0022-1481 (Print) 1528-8943 (Online)

Full text not available from this repository. (Request a copy)

Abstract

This study presents results on the hydrodynamic and thermal characteristics of single-phase water flows inside microchannels (MCs) with different micropin fin (MPF) configurations. Different inline arrangements of micropin fins were considered over Reynolds numbers ranging from 20 to 160. The computational studies were performed using the commercial software ansys 14.5. The hydrodynamic performances of the configurations were compared using two parameters, namely, pressure drop and friction factor while the comparison in their thermal and thermal-hydraulic performances were based on Nusselt number and thermal performance index (TPI). Wake-pin fin interactions were carefully analyzed through streamline patterns in different arrangements and under different flow conditions. The results showed strong dependencies of all four evaluated performance parameters on the vertical pitch ratio (ST/D). Weaker dependencies on height over diameter ratio (H/D), horizontal pitch ratio (SL/D), and minimum available area (Amin) were observed. With an increase in the Reynolds number, extension of the wake regions behind MPFs was observed to be the paramount factor in increasing pressure drop and Nusselt number. Regarding TPI, two adverse trends were observed corresponding to different ST/D ratios, while the effect of SL/D ratio was unique. For friction factors, H/D and SL/D ratios of 1 and 1.5, respectively, led to minimum values, while different ST/D ratios are needed for each diameter size for the maximum performance. Moreover, a twofold increase in Reynolds number resulted in about 40% decrease in friction factor in each configuration.
Item Type: Article
Subjects: T Technology > T Technology (General)
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Engineering and Natural Sciences > Academic programs > Mechatronics
Faculty of Engineering and Natural Sciences
Depositing User: Ali Koşar
Date Deposited: 09 Nov 2016 12:16
Last Modified: 22 May 2019 13:41
URI: https://research.sabanciuniv.edu/id/eprint/29802

Actions (login required)

View Item
View Item